%I M2102 #30 Feb 07 2020 12:09:07
%S 1,2,17,167,227,362,398,331427,430022,737183,800663,821498,1475858,
%T 2271407,3009173,5417453
%N Values of m in the discriminant D = 4*m leading to a new minimum of the L-function of the Dirichlet series L(1) = Sum_{k>0} Kronecker(D,k)/k.
%C The terms a(2)-a(7) are given in Shanks's Table 4 "Lochamps, 4M = Discriminant". This table gives some values of L(1) for larger discriminants, e.g., L(1) = 0.2510... for D = 4*4813372912697. In comparison, L(1) = 0.28422 for D = 4*a(16) = 4*5417453. - _Hugo Pfoertner_, Feb 07 2020
%D D. Shanks, Systematic examination of Littlewood's bounds on L(1,chi), pp. 267-283 of Analytic Number Theory, ed. H. G. Diamond, Proc. Sympos. Pure Math., 24 (1973). Amer. Math. Soc.
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H D. Shanks, <a href="/A003419/a003419.pdf">Systematic examination of Littlewood's bounds on L(1,chi)</a>, Proc. Sympos. Pure Math., 24 (1973). Amer. Math. Soc. (Annotated scanned copy)
%Y Cf. A003420, A003421, A003521.
%K nonn,more
%O 1,2
%A _N. J. A. Sloane_
%E New title, a(1) prepended, and a(8)-a(13) from _Hugo Pfoertner_, Feb 04 2020
%E a(14)-a(15) from _Hugo Pfoertner_, Feb 05 2020
%E a(16) from _Hugo Pfoertner_, Feb 07 2020