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SYSTEMATIC EXAMINATION OF
LITTLEWOOD’S BOUNDS ON L(1, )

DANIEL SHANKS

1. Introduction. This investigation was largely conducted in close collabora-
tion with D. H. and Emma Lehmer. My joint paper with them [1] overlaps some
with the present paper but each paper also treats topics not in the other, and to
minimize duplication the papers refer to each other for those aspects of the

oblem.
L’ We confine ourselves to the real characters y,=(d/n) and examine the functions

F) L= % (8) =11 ==

n=1 ;; ;_(I:Z qs_(d/q)

for s=1. If L(s, y,) satisfies the Riemann hypothesis, and d#m?, then Littlewood
[2] deduces the bounds

(2 [{1+0(1)} (12¢"/7) In In|d] ™" <L(1, xa) <{1 +0(1)} 2¢” In In|d].

He gives nothing about the o(1) here, neither its sign nor the manner in which it
approaches zero as a function of d.

We wish to study the possibility of approaching these bounds or, perhaps,
surpassing them, and to obtain a measure for this we temporarily ignore the o(1)
and define the upper and lower Littlewood indices by

(3) L(1, z)/2¢' InIn|d|=ULL  L(1, %) (12/n%) ¢’ In In|d|=LLL.

We will examine, systematically, the possibility of finding d with
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268 DANIEL SHANKS

(4) ULIZ1 or LLISL.

Littlewood himself [2], followed by Chowla [3], got halfway there by con-
structing arbitrarily large |d| having

(5) ULI2(1—¢) or LLI<2(1+e)

for any positive ¢. Relative to these constructions (called LC in the following)
the question now is whether we can attain the extra factor of 2. If LC obtains a
certain large (or small) L(1, yp) for a discriminant D, then we would have to obtain
a comparable L(1, y,) with

(6) Inlnjd|=3InIn|D| or |d=exp((In|D|)"?).

Thus, if their D=10%3°, our d must be the much smaller d =104,
The first step of LC in obtaining a large (or small) L(1, y,)is to select D such that

(7) (D/g)=+1 (or(D/g)=—1)

for all primes g <some p. That maximizes (or minimizes) the first 7 (p) factors ﬁ)
the Euler product in (1) for s=1. There are such D by the Chinese Remainder
Theorem satisfying N

(8) D<4 ﬁ q=U,.

q=2

The bound on the right, U, and some further construction then yields (5). But U,
is surely grossly too large since there are, in fact,

i)

distinct solutions D of (7), all being less than U,,.

If one could identify the smallest of these D by some algebraic or analytic
technique, one could seek to improve (5) with these smallest D. Since no such
technique is known, we will compute the smallest d numerically and begin our
study with four introductory examples of (3) so computed.

2. Four examples and their computation. In (10a-d) below, we list four d,
each being the smallest discriminant having a prescribed quadratic character. .
The characters are designated as follows: aR, (aN,) means a positive d#m? of
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the form 8k 4+ a which is a quadratic residue (nonresidue) of all odd primes g=p.
Similarly, —aR,(—aN,) is such a negative d= —(8k +a). For each d in (10a-d)
we give the class number 4(d) of Q(d"/?) and, for d>0, the regulator In &. Then
L(1, x) equals

2h(d) Ing/d'* or nh(d)/(—d)'*
for d>0 or d <0, and the indices are computed by (3).

d=1R,;,=2871842842801 (prime),  h(d)=1,

1
(102) In £=7023729.36, L(1, x)=28.28929, ULI=0.6933.

(10b) d=5N 3, =49107823133 (prime),  h(d)=1,
Ine=18804.68, L(l,%)=016972, LLI=1.1773.
(100 4=~ TRisr= —47375970146951 (composite),  h(d)= 19213042,

L(1, 7)=8.76934,  ULI=0.7136.
L(ro g ="M= —30059924764123 (prime),  h(d)=296475,
L(1, x)=0.16988,  LLI=12637.

These four (first solution) d are clearly much stronger than the LC construc-
tions D that yield (5). The example (10b) is especially strong; it nearly attains (4).
The first — 3N, 4, is not quite that strong, but if it had a class number, say 230000
instead of its listed h(d), it could well be a violation of the RH, subject to investiga-
tion of its factor {1+o(1)}.

A brief word about computation. These four d, and most of those that follow,
were obtained with Lehmer’s delay line sieve DLS-157 [4]. This is a specialized
computer that determines solutions N of the system of congruences:

N=a,(mod q) (q=2,3,5,...,157).

If it had not been available, the computation of, say, the first — 3N,g, aboveona
commercial computer would be incredibly time-consuming and expensive; in a
word, impractical. Again, the classical algorithms for computing h(d) and ¢ are far
too slow for the huge regulator in (10a) and h(d) in (10c), and it was necessary to
devise new algorithms for computing A(d) [5] and Ine [6] that are far more
efficient. Suffice it to say that without Lehmer’s DLS-157 and without these two
new algorithms much of the data that follows would have been almost impossible
to obtain.

@
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3. Even discriminants. Presently, we will study the variations in the ULI and
LLI for all such first solutions of 1R, 5N, etc., as p is systematically increased :
p=3,5,7,11,.... But these four characters all have odd d and it is desirable to
gather more data by examining even d also.

For any N # —k? we write
‘?ﬂ.‘((W © /AN 1
Ly()= Y () =
past=>] (1 w() m§1< m )m

for the even d= —4N. All even terms m=2r in (11) vanish. Correspondingly, the
leading (and strongest) factor in the Euler product in (1) is now lost since (d | 9)=0
for g=2. Using Littlewood’s analysis for d= —4N, everything goes as before
except at the very end when these leading factors of 2 or 2 drop off. One therefore
has, instead of Littlewood’s (2), the stronger result:

(12 [{1+o(1)} 8e’/n*) In In[4N|]~ ' < Ly(1)<{1+0(1)} ¢’ In In |4N].
For even d we therefore modify (3) and define the indices by

®

The bounds (12) are valid for every N # — k2, not merely for fundamental discrim- N
inants. Consider

(13) Ly(1)/e’ InIn[4N|=ULL,  Ly(1)(8/n%) ¢’ In In|4N|=LLI.

—3R ¢7=—29772062022491 = — N .

One has
(—=N|g)=+1 forg=3t0167  and (—N|g)=—1 forg=2.

With a discriminant — 4N, for this N, we can “neutralize” the “wrong” character
with respect to g=2, and (12) then holds for its Ly/(1).

In (14a-d) we list four examples analogous to (10a—d). Each has a wrong
character for g=2 that is neutralized with a factor of 4. Their indices are now
computed by (13) and are seen to be comparable to those in (10a—d). In effect, we
simply ignore g=2 by this device and study only the sequence of (d | g) for
qg=3.5,....

d=4(—3R¢7)= —4-29772062022491

(142) Ly(1)=4.54327,  ULI=0.7333.
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d=—4(—7N ;)= —4-17382121592383,

14b

(14b) Ly(1)=027109,  LLI=13548.
y d=4(5R, ;) =4 4745628949021 ,
(14¢) Ly(1)=430219,  ULI=0.7063.
(14d) d=4(1N,4,)=4-11571384229697,

Ly(1)=0.26008, LLI=1.2950.

4. Systematic examination of the LLL In Table 1 we list the indices LLI for
the smallest d having the character —3N,, 5N, 4(—7N,) and 4(1N,) for p=3, 5,
7,.... (The LLI of the examples above are found in Table 1 in the appropriate
rows and columns.) The discriminants d themselves, their A(d) and L(1, Xa), are
not given in Table 1 but can be found in the tables in [1] and [7]. This is what we
observe in Table 1:

(a) All LLI listed are far stronger for these smallest d than for the LC con-
struction in (5).

(b) If we set aside the smaller d, those for p <50, we see a certain uniformity
share: the LLI are essentially equal, on the average, for all four characters, and
Lppear to remain stable, on the average (or change only very slowly), as p increases.

(c) For these 50 <p <181, the average LLI is about 1} and the fluctuations
take us up to 1.528 for the weak 4(1Ng;) and down to 1.177 for the very strong
example (10Db).

(d) The d=—3N, for p=17 thru 37 is the famous —163 and its startling
LLI=0.8675 would imply that ¥ (— 163 | n) n™* violates the Riemann hypothesis
were it not for its factor {1+o0(1)}. For the present, we will assume that this factor
saves the day (since 163 is quite small) but we must return to this {1 +o (1)} problem
Jater. Similarly, the LLI shown for the even smaller d= —28=4(—7N;) and
d=68=4(1N ) are (temporarily) discounted.

(¢) With this dubious d= —163 excepted, we see no indications here for
violations of the RH. We are making a real effort here to obtain cases of LLI<1
but they do not appear (for large d); the strongest examples such as SN ;4 press
towards the bound, but do not cross it.

5. Systematic examination of the ULL. In Table 2 we list the ULI for the char-
acters 1R, (#m?), —TR,, 4(5R,), and 4(—3R,). The ULI behave quite differently
from the LLI.

(a) For p<13, the ULI can even be weaker than (5) but they increase rapidly
with p and become distinctly stronger.

(b) Quite unlike point (b) of §4, the growth of the ULI is very obvious as are
the differences among the four characters, especially the outer two.

-
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TaBLE 1. LLI for first discriminant of the character.

P —3N, SN, 4(—7N,) 4(1N,)
3 1.6855 0.4436 1.0317 1.0560
5 1.3744 1.6125 1.0317 1.0560
7 1.3744 1.3880 1.8407 1.0560
11 1.1937 1.3880 1.6717 1.0560
13 1.1937 1.2467 1.4888 1.7017
17 0.8675 1.1377 1.4565 1.5780
19 0.8675 1.2470 1.1671 1.5108
23 0.8675 1.2470 1.6268 1.4011
29 0.8675 1.2908 1.4350 1.4011
31 0.8675 1.3876 1.3874 1.1893
37 0.8675 1.3876 1.4031 1.1893
41 1.3002 1.3876 1.4031 1.4815
43 1.3002 1.3249 1.3838 1.5256
47 1.2315 1.3593 1.3838 1.3750
53 1.2617 1.3593 1.2898 1.4138
59 1.2617 1.3593 1.2898 1.4194
61 1.3058 1.1855 1.2898 1.3409
67 1.3944 1.3144 1.2607 1.3409
71 1.3269 1.4284 1.2607 1.3042
73 1.3423 1.4220 1.2607 1.3042
79 1.3423 1.4220 1.3514 1.2411
83 1.2869 1.3633 1.2979 1.5283
89 1.2832 1.3633 1.2979 1.4297
97 1.2832 1.3633 1.2979 1.4297
101 1.2832 1.2210 1.4066 1.3877
103 1.2832 1.2210 1.3432 1.3877
107 1.2974 1.2809 1.3454 1.3877
109 1.3182 1.2809 1.3303 1.3877
113 1.3182 1.2809 1.3303 1.3877
127 1.2422 1.2243 1.3303 1.4173
131 1.3604 1.2176 1.3248 1.3541
137 1.3604 1.1773 1.3248 1.3541
139 1.3114 1.1773 1.3130 1.3279
149 1.3422 1.2393 1.3555 1.3010
151 1.3422 1.2393 1.3555 1.3010
157 1.3422 1.2393 1.3555 1.3343
163 1.3422 1.2393 1.3555 1.3343
167 1.3223 1.3433 1.3548 1.2950
173 1.2789 1.2846
179 1.2637
181 1.2637
Average LLI for p> 50
1.3096 1.2899 1.3218 1.3629
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TaBrLe 2. ULI for first discriminant of the character.

p 1R, —7R, 4(5R)) 4(—3R),)
3 0.3359 0.4828 0.4062 0.5994
5 0.3989 0.5053 0.4637 0.5994
7 0.4469 0.5438 0.4975 0.6085
11 0.4770 0.5535 0.5324 0.6301
13 0.5064 0.5710 0.5625 0.6301
17 0.5189 0.5896 0.5726 0.6545
19 0.5485 0.5899 0.5868 0.6325
23 0.5551 0.6100 0.5986 0.6642
29 0.5651 0.6155 0.6090 0.6600
31 0.5787 0.6222 0.6250 0.6742
37 0.5892 0.6401 0.6206 0.6742
41 0.5891 0.6401 0.6267 0.6718
43 0.6039 0.6652 0.6267 0.6655
47 0.6138 0.6652 0.6386 0.6937
53 0.6182 0.6652 0.6546 0.6801
59 0.6249 0.6628 0.6562 0.6801
61 0.6249 0.6628 0.6569 0.6924
67 0.6308 0.6691 0.6616 0.7134
71 0.6386 0.6740 0.6633 0.7134
73 0.6386 0.6781 0.6541 0.7134
79 0.6493 0.6781 0.6668 0.7134
83 0.6629 0.6716 0.6576 0.7134
89 0.6629 0.6906 0.6576 0.6930
97 0.6629 0.6906 0.6730 0.7033
101 0.6696 0.6906 0.6792 0.7069
103 0.6695 0.6906 0.6792 0.7069
107 0.6822 0.6906 0.6885 0.7001
109 0.6822 0.6906 0.6767 0.7001
113 0.6709 0.7036 0.6910 0.7178
127 0.6709 0.7036 0.6921 0.7178
131 0.6933 0.6984 0.7039 0.7178
137 0.6933 0.7079 0.6908 0.7178
139 0.6933 0.7079 0.6908 0.7005
149 0.6988 0.7075 0.7063 0.7285
151 0.6988 0.7067 0.7063 0.7077
157 0.7136 0.7063 0.7213
163 0.7064 0.7063 0.7333
167 0.7333
173 0.7241
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In Figure 1 we show this difference graphically. The ULI for 1R, (the so-called
“pseudosquares”) start very low, increase rapidly and smoothly with p, and only
become ragged as p exceeds 100 and ULI approaches 0.7. Those for 4(-3R,)
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start much higher, increase slowly and exhibit much greater fluctuations. The two
intermediate characters, not shown in Figure 1, behave intermediately; they start
at an intermediate level, increase at an intermediate rate, and have an intermediate
amount of raggedness.

A qualitative explanation of this behavior is based upon the relation of these
characters to the perfect squares — the principal characters. All squares not divisible
by any prime <p are 1R,. For 1R, the S, solutions (9) will therefore include not
only the pseudosquares, 1R, (#m?), but also many perfect squares. Thus, the first
pseudosquare will appear very late, especially for smaller p. Thus 1R;=73> U,
=24, 1Rs=241>U;=120, 1R;=1009> U,=2840; and while 1R, =2641<U,,
it is larger than the first 11 solutions: 1%, 13%,17%,...,47% For 1R, In Ind is there-
fore correspondingly large and ULI is correspondingly small. As p increases, this
competition with the perfect squares slowly decreases.

The sets of S, solutions for —7R,, and for SR, are obtained from that for 1R,
by, respectively, the sets {IR,—U,} and {1R,+3U,} and so are not distributed
uniformly in U, but are both biased towards the second half of U, as a reflection
of the many small squares in 1R,. Their first solutions are therefore also delayed
([7, p. 435], [1]) but this effect diminishes with increasing p more rapidly than the

g’responding effect for 1R, Finally, —3R,, differs from a square in two ways,
ng both negative and wrong for g=2. Its delay is therefore relatively small and
isrelatively quickly dissipated with increasing p. These differences are also reflected
in the fact that while 1R, 5, and — 3R, are nearly the same size, the second is a
valid solution for four extra values of q: 157, 163, 167, 173.

For large p, and therefore large d, these strong effects of the perfect squares will
dissipate as the squares become less dense. Thus, we can anticipate that the differ-
ences noted, caused by differing relations to the principal characters, will largely
disappear. For p, say ~300-400, one would expect a common average ULI of
about 2 and sizable fluctuations around this average. In a word, we can expect that
the ULI will then be a mirror-image of the LLI and that the different behaviors
noted in §4(b) and §5(b) will vanish.

6. Conclusions from this first experiment. Setting aside the two complications,
the {1+40(1)} factor and the strong effect of the squares just discussed, the indices
for the first solution d behave fairly uniformly; they are consistently stronger than
those of LC (5) but show no sign of ever violating the indicated bounds. For very
large p and d - far beyond our data — it is likely that the observed average LLI~%
and anticipated ULIx 2 will very slowly deteriorate and sink back towards the LC
values. The LC bound on D is actually greater than the U, of (8); it is [2, p. 369]

(15) ID|<p*U,.

On the average, our first solution should be the much smaller:

C
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(16) |d|~ U,/S,~ 2" P2 Inp.
pr~p

But the ratio
(17) In In |d|/In In|D|

for (15) and (16) nonetheless very slowly increases to 1. It is likely that the fluctua-
tions in the indices around these deteriorating averages will simultaneously slowly
increase and that d with strong indices will therefore continue to appear.

7. Lochamps and hichamps. The first solutions of (7) do not necessarily have
the strongest indices. They do have minimal values of In In|d| but their L(1, ¥)
need not be the most extreme since the character (4 | g) has only been forced
thru g=p and floats freely for subsequent g. Since we seek to approach or pass the
bounds (2) and (12), we will therefore seek (to a limited extent) to locate the strong-
est possible examples.

Suppose N>0, d= —4N in (11). If

(18) Ly(l)<L,(1)  (allo<n<N), J

we say Ly(1) is a lochamp. 1If
(19) Ly(1)>L,(1) (all0<n<N),

we say Ly(l) is a hichamp. Similarly, there will be a sequence of lochamps and
hichamps for positive discriminants d=4M, M >0. We include odd discriminants
—N in the tables by the use of their multiples d= —4N, and Ly(1) instead of
L(1, x), in order to obtain a uniform sequence. It is clear that no indices can be
stronger than those for these champions, and if any indices approach or pass the
bounds we would find them here.

Table 3 shows the sequence of negative discriminant lochamps thru N <50000.
Each Ly (1) there thru L, ;3,4 (1) satisfies (18). But for N > 50000 it was not possible
to examine every N and below the heavy line in Table 3 the Ly(1) shown are
merely tentative, that is, they are smaller than any L,(1),0<n<N, that has come
to my attention. For the positive discriminant lochamps in Table 4 the heavy line
represents M =2000. The entries in these tables come from several sources in-
cluding calculations of the Lehmers, of myself, and from an unpublished table of
Ly (1), —2000 < N < 50000, due to Mohan Lal.

Prior to the N =163 in Table 3 we see the well-known, very strong N =58, and
following 163 no smaller Ly (1) appears until N =4687. Only at N = 30493 does an
appreciably smaller Ly (1) develop. The case N=991027, with h(—N)=63, was

<
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TaBLE 3. Lochamps, —4N = Discriminant.

N Ly(1) LLI
P

7 0.59371 1.0317
37 0.51647 1.1996
58 0.41251 1.0094
163 0.36910 0.8675
4687 036711 1.2117
30178 0.36169 1.2844
30493 0.34182 1.2142
47338 0.33210 1.1974
222643 0.32957 1.1946
546067 0.32523 1.2119
991027 0.29822 1.1302
393292183 0.29449 1.2979
481022602 0.28577 1.2634
1970364883 0.28398 1.2560
2426489587 0.27982 1.2415
3416131987 0.27227 1.2142
L 8864190043 0.26983 1.2198
71837718283 0.26731 1.2422
85702502803 0.26172 1.2188
569078186623 0.25346 1.2252

,V 832 . s' TaBLE 4. Lochamps, 4M = Discriminant.

/ M L_y(1) LLI
3LF 9 2 0.62323 0.6587 /\ L
17 0.50804 1.0560 %
167 0.45014 1.2168 /
227 0.40578 1.1239
362 0.38245 1.0959
| 398 0.33494 0.9660
679733 0.33492 1.2550
2004917 0.30698 1.1855
41941577 0.29228 1.2411
77891897 0.28949 1.2426
261153673 0.28533 1.2210
9447241877 0.27058 1.2243
19553206613 0.26644 1.2176
49107823133 0.25457 1.1773
4813372912697 0.25094 1.2392
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TaBLE 5. Hichamps, —4N = Discriminant.

[N Ly(1) ULI
m—
2 1.1107 0.8518
5 1.4050 0.7190
1 1.4208 0.5994
14 1.6792 0.6770
26 1.8484 0.6758
41 1.9625 0.6763
89 1.9980 0.6336
101 2.1882 0.6856
194 2.2555 0.6682
314 2.3048 0.6585
341 2.3818 0.6765
689 23937 0.6494
1091 2.4254 0.6405
1154 2.5894 0.6817
1889 2.6022 0.6673
2141 2.6479 0.6747
3449 2.6747 0.6661
3506 2.7590 0.6865
5561 2.7805 0.6777
6254 2.7808 0.6744
8126 2.7881 0.6688
8774 2.8173 0.6736
10709 2.8840 0.6841
13166 2.9022 0.6829
15461 2.9561 0.6913
24569 3.0465 0.7005
148139 3.0486 0.6616
275651 3.1504 0.6718
951851 32217 0.6655
1692851 3.4046 0.6937
17948531 3.5705 0.6924
42143219 3.7377 0.7134
366393011 3.7642 0.6930
468717779 3.7906 0.6953
1418543411 3.8976 0.7033
4256961491 3.9778 0.7069
14701960979 4.0035 0.7001
36085593491 4.1504 0.7178
461587122779 4.2004 0.7059
864852408419 4.2970 0.7174
3989084684339 43938 0.7225
7024878542699 4.4542 0.7285
27484931611331 4.4655 0.7213
29772062022491 45433 0.7333
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TaBLE 6. Hichamps, 4M = Discriminant.

M L_y() ULI
2 0.6232 0.4780
3 0.7604 0.4690
6 0.9359 0.4544
7 1.0464 0.4881
10 1.1501 0.4947
19 1.3372 0.5122
31 1.4404 0.5142
34 1.4572 0.5140
46 1.5913 0.5410
79 1.7130 0.5495
106 1.7461 0.5446
151 1.7874 0.5404
211 1.8619 0.5479
214 1.9114 0.5619
1.9193 0.5538
1.9928 0.5673
2.0643 0.5805
2.1074 0.5748
2.1143 0.5706
2.1231 0.5662
2.1856 0.5803
2.2450 0.5940
2.2636 0.5878
2.2796 0.5886
3019 2.3204 0.5815
3931 2.3487 0.5814
4174 2.3684 0.5847
5119 24111 0.5898
7606 24731 0.5948
10399 2.5089 0.5958
10651 2.6246 0.6227
18379 2.7086 0.6294
32971 2.7660 0.6295
48799 2.8047 0.6299
61051 2.8364 0.6324
78094 2.8457 0.6296
78439 2.9049 0.6426
111094 2.9134 0.6376
162094 29139 0.6307
162451 2.9293 0.6340
187366 2.9461 0.6350
189814 2.9470 0.6350
230239 2.9651 0.6355
241894 2.9807 0.6379

279
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257371 3.0156 0.6443
294694 3.0736 0.6543
584791 3.1077 0.6497
969406 3.1128 0.6427
1138999 3.1509 0.6480
1234531 3.1841 0.6536
3462229 3.2644 0.6546
6810301 3.3194 0.6562
10073779 3.3597 0.6589
10393111 3.4098 0.6683
39136549 3.4616 0.6616
43030381 3.4762 0.6633
100041439 3.5179 0.6615
249623581 3.6001 0.6668
1169755141 3.6343 0.6576
1272463669 3.7146 0.6713
2055693949 3.7496 0.6730
5959962661 3.8389 0.6792
7209891781 39018 0.6885
30116328181 3.9041 0.6767
78073081381 4.1608 0.7131
4745628949021 4.3022 0.7063
11256755665549 4.3598 0.7099 J

discovered by the Lehmers and is exceptionally strong. In Table 4 we find another
case of LLI<1 at d=4-398. (Everyone knows of Q((— 163)'/?) but almost no one
knew that Q (398'/%) was nearly as strong.)

In Tables 3 and 4 the tentative lochamps having N > 50000 and M > 2000 both
have an average value of LLI of about 1.22. In a word, we are trying harder than in
Table 1 and so are getting indices closer to their presumed bound.

The corresponding hichamps in Tables 5 and 6 that are not already in Table 2
are also somewhat stronger but are clearly also markedly affected by the presence
of the squares, as discussed above. Some of the tentative hichamps in Table 6 were
extracted from Beach’s and Williams’ table [8] of (M)"? having exceptionally
long continued fractions.

The results of this second experiment confirm those of the first; by trying
harder we press a little closer to the bounds but do not pass them except for
d=—163 and d=4-398. We now return to the postponed problem of {1 +o0(1)}
and give it a partial treatment.

8. Partial analysis of {1+0(1)} and conclusions. Clearly, the next order of
business would be to determine if the o (1) on the left sides of (2)and (12) are positive
and sufficiently large for d= —163 and d=4-398 so that the bounds shown are
valid. Otherwise, their L functions violate the Riemann hypothesis. Unfortunately,

<
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many complicated terms enter into these o(1) and no such unequivocal deter-
mination is now available. Nonetheless, it is desirable to show that the two leading
and simplest approximations that were made are of the correct sign and magnitude
so that they alone could account for these apparent violations.

Littlewood’s (2), prior to the two approximations alluded to, could be written as

(20) [{1+0(1)} BT <L(L z)<{1+o(1)} A(x),
where

@) Bmew X (SUmn AR=ew T Lm
and

(22) x=(n[d)20+*,  £>0.

An integrand in the analysis [2, p. 365] includes the factor
(23) LG +e+in)/LG+e+in),

' Ld the o(1) in (20) depend upon our choice of .
Let us define a(x) and b(x) by writing

(24) B(x)=(1 +i(x)—) 5 1nx, A(x)=(1 +—a(x)—x> ¢’ Inx.

x?Inx) n? x1%1n

As x - 00, a(x)/x"/? Inx and b(x)/x"/* Inx — 0 and the first approximation is their
replacement by 0. The second approximation sets the ¢ of (22) equal to 0 and so
the left side of (20) becomes

(29) [{140(1)} 12¢'n" 2 InIn|d|]™".

Now, in all of our examples above we had |d| <4- 10'4, and setting e=0 in (22)
we obtain x < 1200. This is sufficiently small that one can easily compute b(x) and
a(x) exactly. We find that throughout this range b(x) is positive and fairly stable,
remaining mostly between 1 and 2. (We also find that a(x) changes sign frequently
and is usually much smaller, but do not need that now.) Therefore,

B(x)>6n"%¢" Inx.

This is in the correct direction to absolve d= —163 and 4-398, and the difference
involved is sufficient to account for the latter’s apparent misdemeanor: LLI=0.966.

©
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But for d= —163, if we set e=0, we get
x=(In163)=259463,  B(x)=3.7601, 6n" 2’ Inx=3.4853,

and even the smaller B(x)™" exceeds L(1, y)=/163"2. However, one cannot
allow ¢ to approach 0 too closely for the small |d|=163 without losing control
over the other approximations leading to the o(1) in (20). It happens that even a
quite small ¢ in (22) will suffice to obtain an x with B(x)~! <7/163'/2. This is be-
cause an increasing x will soon encounter the odd powers of primes p™=27, 29, 31
and thereby yield a B(x)=4.0695, whereas, at the earlier square p*=25, B(x) had
actually decreased from 3.8360.

That is as far as we will go here. While that leaves it open whether —163 does
or does not violate the lower bound, there is enough here, in the correct direction,
that we now have no real reason to believe that it does.

We have sought, in two different ways, to exceed the bounds (2) and (12), but
with an improbable exception at d = — 163 we find that we cannot. Our approach
has not been at all hit-and-miss but, instead, very systematic. The resulting ULI
and LLI are quite uniform and clearly relate to these bounds. All of our strongest
cases, such as d=—991027 and d=first 5N 30, press against the bounds. Qs _
tentative lochamps had LLI=1.22. The simplest interpretation of all this pers.) '
tent behavior is that the extended Riemann hypothesis is true. Of course, that is
no proof —not even for a single d.

Any heuristic conclusion is somewhat subjective and I should add that I, per-
sonally, regard this as fairly strong evidence. Heuristic reasoning, unlike deductive
reasoning, is influenced by collateral evidence. There was considerable evidence
for the ERH, of several sorts, prior to this work and that can only strengthen our
assessment of the present data.

Suppose we did find a clear violation. We would then know that there were
non-Riemannian zeros for that d and we could even give a lower bound for their
real parts. If, in place of (23), we were forced out to

IL(0+ e+ in)/L(6+e+in)|
because of zeros at +it, then (22) would be replaced by
(26) x=(In|d])* +401=0)

and the famous factor of 2 in the bounds would be replaced by the larger factor
1/(1-0).

Littlewood does not give (26) but the writes [2, p. 3717, “Hypothesis X, without
modification, is essential in proving Theorem 17 [ —that is, in proving (2)]. I
presume that the need for an enlarged (26) is what he had in mind.

™
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