login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003417 Continued fraction for e.
(Formerly M0088)
21

%I M0088

%S 2,1,2,1,1,4,1,1,6,1,1,8,1,1,10,1,1,12,1,1,14,1,1,16,1,1,18,1,1,20,1,

%T 1,22,1,1,24,1,1,26,1,1,28,1,1,30,1,1,32,1,1,34,1,1,36,1,1,38,1,1,40,

%U 1,1,42,1,1,44,1,1,46,1,1,48,1,1,50,1,1,52,1,1,54,1,1,56,1,1,58,1,1,60,1,1,62,1,1,64,1,1,66

%N Continued fraction for e.

%C This is also the Engel expansion for 3*exp(1/2)/2 - 1/2. - _Gerald McGarvey_, Aug 07 2004

%C First differences are A120691. - _Paul Barry_, Jun 27 2006

%C Sorted with duplicate terms dropped, this is A004277, 1 together with the positive even numbers. - Alonso del Arte, Jan 27 2012

%D CRC Standard Mathematical Tables and Formulae, 30th ed. 1996, p. 88.

%D S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 1.3.2.

%D J. R. Goldman, The Queen of Mathematics, 1998, p. 70.

%D T. J. Osler, A proof of the continued fraction expansion of e^(1/M), Amer. Math. Monthly, 113 (No. 1, 2006), 62-66.

%D O. Perron, Die Lehre von den Kettenbrüchen, 2nd ed., Teubner, Leipzig, 1929, p. 134.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H N. J. A. Sloane, <a href="/A003417/b003417.txt">Table of n, a(n) for n = 1..10000</a>

%H H. Cohn, A short proof of the simple continued fraction expansion of e, Amer. Math. Monthly, 113 (No. 1, 2006), 57-62. <a href="http://www.jstor.org/stable/27641837">[JSTOR]</a> and <a href="http://arxiv.org/abs/math/0601660">arXiv:math/0601660</a>.

%H S. Crowley, <a href="http://vixra.org/abs/1202.0079">Mellin and Laplace Integral Transforms Related to the Harmonic Sawtooth Map and a Diversion Into The Theory Of Fractal Strings</a>, vixra:1202.0079 v2, 2012.

%H K. Matthews, <a href="http://www.numbertheory.org/php/davison.html">Finding the continued fraction of e^(l/m)</a>

%H Simon Plouffe, <a href="http://www.lacim.uqam.ca/%7Eplouffe/articles/MasterThesis.pdf">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992.

%H Simon Plouffe, <a href="http://www.lacim.uqam.ca/%7Eplouffe/articles/FonctionsGeneratrices.pdf">1031 Generating Functions and Conjectures</a>, Université du Québec à Montréal, 1992.

%H Ward. O. Whitt, Weirdness in CTMC's, Notes for Course IEOR 6711: Stochastic Models I, <a href="http://www.columbia.edu/~ww2040/6711F12/lect1129.pdf">[PDF]</a>, 2012. - From _N. J. A. Sloane_, Jan 03 2013

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/eContinuedFraction.html">e Continued Fraction</a>

%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>

%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>

%F G.f.: (2+x+2x^2-3x^3-x^4+x^6)/(1-2x^3+x^6); a(n)=sum{k=0..n, 2*C(0,k)-C(1,k)-2*sin(2*pi*(k-1)/3)*floor((2k-1)/3)/sqrt(3)} [offset 0]; - _Paul Barry_, Jun 27 2006

%F a(n)=2*a(n-3)-a(n-6), n>=8 . [From _Philippe Deléham_, Feb 10 2009]

%F G.f.: 1 + U(0) where U(k)= 1 + x/(1 - x*(2*k+1)/(1+x*(2*k+1) - 1/((2*k+1) + 1 - (2*k+1)*x/(x + 1/U(k+1))))) ; (continued fraction, 5-step). - _Sergei N. Gladkovskii_, Oct 07 2012

%F a(3n)=2n, a(1)=2, a(n)=1 else (i.e., for n>1, not multiple of 3). - _M. F. Hasler_, May 01 2013

%e 2.718281828459... = 2 + 1/(1 + 1/(2 + 1/(1 + 1/(1 + ...))))

%p numtheory[cfrac](exp(1),100,'quotients'); # _Jani Melik_, May 25 2006

%p A003417:=(2+z+2*z**2-3*z**3-z**4+z**6)/(z-1)**2/(z**2+z+1)**2; # _Simon Plouffe_ in his 1992 dissertation.

%t ContinuedFraction[E, 100] (* _Stefan Steinerberger_, Apr 07 2006 *)

%t a[n_] := KroneckerDelta[1,n] + 2n/3 - (2n-3)/3*DirichletCharacter[3,1,n]; Table[a[n], {n,1,20}] (* _Enrique Pérez Herrero_, Feb 23 2013 *)

%o (PARI) contfrac(exp(1)-1) \\ _Alexander R. Povolotsky_, Feb 23 2008

%o (PARI) { allocatemem(932245000); default(realprecision, 25000); x=contfrac(exp(1)); for (n=1, 10000, write("b003417.txt", n, " ", x[n])); } \\ From _Harry J. Smith_, Apr 14 2009

%o (PARI) A003417(n)=if(n%3,1+(n==1),n\3*2) \\ [_M. F. Hasler_, May 01 2013]

%Y Cf. A001113, A007676, A007677, A001204, A058282, A005131.

%K nonn,cofr,nice,easy

%O 1,1

%A _N. J. A. Sloane_.

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 24 01:09 EST 2014. Contains 249867 sequences.