%I #28 Sep 09 2022 22:33:25
%S 2,65,128,730,793,1458,4097,4160,4825,8192,15626,15689,16354,19721,
%T 31250,46657,46720,47385,50752,62281,93312,117650,117713,118378,
%U 121745,133274,164305,235298,262145,262208,262873,266240,277769,308800,379793,524288
%N Numbers that are the sum of 2 nonzero 6th powers.
%C As the order of addition doesn't matter we can assume terms are in nondecreasing order. - _David A. Corneth_, Aug 01 2020
%H David A. Corneth, <a href="/A003358/b003358.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from T. D. Noe)
%H Samuel S. Wagstaff, Jr., <a href="https://cs.uwaterloo.ca/journals/JIS/VOL25/Wagstaff/wagstaff8.html">Equal Sums of Two Distinct Like Powers</a>, J. Int. Seq., Vol. 25 (2022), Article 22.3.1.
%e From _David A. Corneth_, Aug 01 2020: (Start)
%e 10069120217 is in the sequence as 10069120217 = 29^6 + 46^6.
%e 139314070233 is in the sequence as 139314070233 = 3^6 + 72^6.
%e 404680615040 is in the sequence as 404680615040 = 22^6 + 86^6. (End)
%t With[{k = 6}, Union@ Map[(#[[1]]^k + #[[2]]^k) &, Tuples[Range[8], {2}]]] (* _Michael De Vlieger_, Sep 09 2022, after _Harvey P. Dale_ at A004999 *)
%Y Cf. A088677 (2 distinct 6th). Supersequence of A106318.
%Y A###### (x, y): Numbers that are the form of x nonzero y-th powers.
%Y Cf. A000404 (2, 2), A000408 (3, 2), A000414 (4, 2), A003072 (3, 3), A003325 (3, 2), A003327 (4, 3), A003328 (5, 3), A003329 (6, 3), A003330 (7, 3), A003331 (8, 3), A003332 (9, 3), A003333 (10, 3), A003334 (11, 3), A003335 (12, 3), A003336 (2, 4), A003337 (3, 4), A003338 (4, 4), A003339 (5, 4), A003340 (6, 4), A003341 (7, 4), A003342 (8, 4), A003343 (9, 4), A003344 (10, 4), A003345 (11, 4), A003346 (12, 4), A003347 (2, 5), A003348 (3, 5), A003349 (4, 5), A003350 (5, 5), A003351 (6, 5), A003352 (7, 5), A003353 (8, 5), A003354 (9, 5), A003355 (10, 5), A003356 (11, 5), A003357 (12, 5), A003358 (2, 6), A003359 (3, 6), A003360 (4, 6), A003361 (5, 6), A003362 (6, 6), A003363 (7, 6), A003364 (8, 6), A003365 (9, 6), A003366 (10, 6), A003367 (11, 6), A003368 (12, 6), A003369 (2, 7), A003370 (3, 7), A003371 (4, 7), A003372 (5, 7), A003373 (6, 7), A003374 (7, 7), A003375 (8, 7), A003376 (9, 7), A003377 (10, 7), A003378 (11, 7), A003379 (12, 7), A003380 (2, 8), A003381 (3, 8), A003382 (4, 8), A003383 (5, 8), A003384 (6, 8), A003385 (7, 8), A003387 (9, 8), A003388 (10, 8), A003389 (11, 8), A003390 (12, 8), A003391 (2, 9), A003392 (3, 9), A003393 (4, 9), A003394 (5, 9), A003395 (6, 9), A003396 (7, 9), A003397 (8, 9), A003398 (9, 9), A003399 (10, 9), A004800 (11, 9), A004801 (12, 9), A004802 (2, 10), A004803 (3, 10), A004804 (4, 10), A004805 (5, 10), A004806 (6, 10), A004807 (7, 10), A004808 (8, 10), A004809 (9, 10), A004810 (10, 10), A004811 (11, 10), A004812 (12, 10), A004813 (2, 11), A004814 (3, 11), A004815 (4, 11), A004816 (5, 11), A004817 (6, 11), A004818 (7, 11), A004819 (8, 11), A004820 (9, 11), A004821 (10, 11), A004822 (11, 11), A004823 (12, 11), A047700 (5, 2).
%K nonn,easy
%O 1,1
%A _N. J. A. Sloane_
%E Removed incorrect program. _David A. Corneth_, Aug 01 2020