%I #29 Feb 16 2025 08:32:27
%S 11,26,41,56,71,86,91,101,106,116,121,131,136,146,151,161,166,171,176,
%T 181,186,196,201,211,216,226,231,241,246,251,261,266,276,281,291,296,
%U 306,311,326,331,341,346,356,361,371,376,386,391,401,406,411,416,421,426,436
%N Numbers that are the sum of 11 positive 4th powers.
%H David A. Corneth, <a href="/A003345/b003345.txt">Table of n, a(n) for n = 1..10000</a> (first 1000 terms from T. D. Noe)
%H Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/BiquadraticNumber.html">Biquadratic Number.</a>
%e From _David A. Corneth_, Aug 03 2020: (Start)
%e 4422 is in the sequence as 4422 = 1^4 + 2^4 + 2^4 + 3^4 + 4^4 + 4^4 + 5^4 + 5^4 + 5^4 + 5^4 + 6^4.
%e 6611 is in the sequence as 6611 = 1^4 + 3^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 4^4 + 6^4 + 6^4 + 7^4.
%e 7286 is in the sequence as 7286 = 2^4 + 2^4 + 2^4 + 2^4 + 3^4 + 3^4 + 3^4 + 3^4 + 3^4 + 4^4 + 9^4. (End)
%t With[{nn=5},Select[Union[Total/@Tuples[Range[nn]^4,11]],#<=nn^4-10&]] (* _Harvey P. Dale_, Jul 20 2022 *)
%Y Cf. A000583 (4th powers).
%K nonn,easy,changed
%O 1,1
%A _N. J. A. Sloane_
%E Incorrect program removed by _David A. Corneth_, Aug 03 2020