login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003314 Binary entropy function: a(1)=0; for n > 1, a(n) = n + min { a(k)+a(n-k) : 1 <= k <= n-1 }.
(Formerly M1345)
12

%I M1345

%S 0,2,5,8,12,16,20,24,29,34,39,44,49,54,59,64,70,76,82,88,94,100,106,

%T 112,118,124,130,136,142,148,154,160,167,174,181,188,195,202,209,216,

%U 223,230,237,244,251,258,265,272,279,286,293,300,307,314,321,328,335

%N Binary entropy function: a(1)=0; for n > 1, a(n) = n + min { a(k)+a(n-k) : 1 <= k <= n-1 }.

%C Morris gives many other interesting properties of this function.

%C a(n) is a convex function of n. (See the Morris reference.)

%D D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, Sect 5.4.9, Eq. (19). p. 374.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A003314/b003314.txt">Table of n, a(n) for n=1..1000</a>

%H D Chistikov, S Iván, A Lubiw, J Shallit, <a href="http://arxiv.org/abs/1509.07588">Fractional coverings, greedy coverings, and rectifier networks</a>, arXiv preprint arXiv:1509.07588, 2015

%H R. Morris, <a href="http://dx.doi.org/10.1137/0117001">Some theorems on sorting</a>, SIAM J. Appl. Math., 17 (1969), 1-6.

%F a(1) = 0; a(n) = n + a([n/2]) + a(n-[n/2]). (See the Morris reference.)

%F a(n) = A001855(n)+n-1. - _Michael Somos_ Feb 07 2004

%F a(n) = n + a(floor(n/2)) + a(ceiling(n/2)) = n*floor(log_2(4n))-2^floor(log_2(2n)) = A033156(n) - n = n*A070941(n) - A062383(n). - _Henry Bottomley_, Jul 03 2002

%F a(1) = 0 and for n>1: a(n) = a(n-1) + A070941(2*n-1). Also a(n) = A123753(n-1) - 1. - _Reinhard Zumkeller_, Oct 12 2006

%e a(6) = 6 + min {1+12, 2+8, 5+5} = 6 + 10 = 16.

%p A003314 := proc(n) local i,j; option remember; if n<=2 then n elif n=3 then 5 else j := 10^10; for i from 1 to n-1 do if A003314(i)+A003314(n-i) < j then j := A003314(i)+A003314(n-i); fi; od; n+j; fi; end;

%t a[1] = 0; a[n_] := If[OddQ[n], n + a[(n-1)/2 + 1] + a[(n-1)/2], 2*(n/2 + a[n/2])];

%t Table[a[n], {n, 1, 57}] (* _Jean-François Alcover_, Oct 15 2012 *)

%o (PARI) a(n)=if(n<2,0,n+a(n\2)+a((n+1)\2))

%o (PARI) a(n)=local(m);if(n<2,0,m=length(binary(n-1));n*m-2^m+n)

%o (Haskell)

%o a003314 n = a003314_list !! (n-1)

%o a003314_list = 0 : f [0] [2..] where

%o f vs (w:ws) = y : f (y:vs) ws where

%o y = w + minimum (zipWith (+) vs $ reverse vs)

%o -- _Reinhard Zumkeller_, Aug 13 2013

%Y Cf. A054248, A097071.

%K nonn,easy,nice

%O 1,2

%A _N. J. A. Sloane_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 4 15:05 EST 2016. Contains 278750 sequences.