login
Number of n-step self-avoiding walks on f.c.c. lattice from (0,0,0) to (0,0,2).
(Formerly M3600)
7

%I M3600 #30 Oct 21 2023 23:51:41

%S 4,24,152,1080,8152,63976,518232,4299728,36360872,312284536,

%T 2716694880,23891215320,212064567160,1897551819416

%N Number of n-step self-avoiding walks on f.c.c. lattice from (0,0,0) to (0,0,2).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H D. S. McKenzie, <a href="http://dx.doi.org/10.1088/0305-4470/6/3/009">The end-to-end length distribution of self-avoiding walks</a>, J. Phys. A 6 (1973), 338-352.

%H <a href="/index/Fa#fcc">Index entries for sequences related to f.c.c. lattice</a>

%Y Cf. A003287, A005543, A005544, A005545, A005546, A005547, A005548.

%K nonn,walk,more

%O 2,1

%A _N. J. A. Sloane_

%E More terms and title improved by _Sean A. Irvine_, Feb 15 2016

%E a(15) from _Bert Dobbelaere_, Jan 14 2019