login
Number of n-step self-avoiding walks on f.c.c. lattice from (0,0,0) to (0,1,1).
(Formerly M3588)
8

%I M3588 #36 Jan 20 2020 07:54:45

%S 1,4,22,140,970,7196,56092,452064,3735700,31484244,269613896,

%T 2339571468,20529434520,181871459580,1624587752400,14617165101216

%N Number of n-step self-avoiding walks on f.c.c. lattice from (0,0,0) to (0,1,1).

%C Cf. A001337.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H D. S. McKenzie, <a href="http://dx.doi.org/10.1088/0305-4470/6/3/009">The end-to-end length distribution of self-avoiding walks</a>, J. Phys. A 6 (1973), 338-352.

%H <a href="/index/Fa#fcc">Index entries for sequences related to f.c.c. lattice</a>

%t A001337 = Cases[Import["https://oeis.org/A001337/b001337.txt", "Table"], {_, _}][[All, 2]];

%t a[n_] := If[n == 1, 1, A001337[[n + 1]]/12];

%t a /@ Range[16] (* _Jean-François Alcover_, Jan 20 2020 *)

%Y Equals A001337(n+1) / 12 for n > 1.

%Y Equals (n+1) * A005398(n+1) / 6 for n > 1.

%Y Cf. A003288, A005543, A005544, A005545, A005546, A005547, A005548.

%K nonn,walk,more

%O 1,2

%A _N. J. A. Sloane_

%E One more term and title improved by _Sean A. Irvine_, Feb 15 2016

%E a(15)-a(16) from _Bert Dobbelaere_, Jan 14 2019