login
Number of representations of n as a sum of distinct Lucas numbers 1, 3, 4, 7, 11, ... (A000204).
(Formerly M0045)
35

%I M0045 #33 Oct 21 2023 23:47:05

%S 1,0,1,2,1,0,2,2,0,1,3,2,0,2,3,1,0,3,3,0,2,4,2,0,3,3,0,1,4,3,0,3,5,2,

%T 0,4,4,0,2,5,3,0,3,4,1,0,4,4,0,3,6,3,0,5,5,0,2,6,4,0,4,6,2,0,5,5,0,3,

%U 6,3,0,4,4,0,1,5,4,0,4,7,3,0,6,6,0,3,8,5,0,5,7,2,0,6,6,0,4,8,4,0,6,6,0,2,7

%N Number of representations of n as a sum of distinct Lucas numbers 1, 3, 4, 7, 11, ... (A000204).

%D A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 58.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A003263/b003263.txt">Table of n, a(n) for n = 1..9349</a>

%H Alfred Brousseau, <a href="http://www.fq.math.ca/fibonacci-tables.html">Fibonacci and Related Number Theoretic Tables</a>, Fibonacci Association, San Jose, CA, 1972. See p. 58.

%H Casey Mongoven, <a href="http://ami.ektf.hu/uploads/papers/finalpdf/AMI_41_from175to192.pdf">Sonification of multiple Fibonacci-related sequences</a>, Annales Mathematicae et Informaticae, 41 (2013) pp. 175-192.

%F G.f.: Product_{n>=1} (1 + x^L(n)) where L(n) = A000204(n). - _Joerg Arndt_, Jul 14 2013

%t n1 = 10; n2 = LucasL[n1]; Product[1 + x^LucasL[n], {n, 1, n1}] + O[x]^n2 // CoefficientList[#, x]& // Rest (* _Jean-François Alcover_, Feb 17 2017, after _Joerg Arndt_ *)

%o (PARI)

%o L(n)=fibonacci(n+1) + fibonacci(n-1);

%o N = 66; x = 'x + O('x^N);

%o gf = prod(n=1, 11, 1 + x^L(n) );

%o Vec(gf) \\ _Joerg Arndt_, Jul 14 2013

%Y Cf. A054770, A000204.

%K nonn,easy

%O 1,4

%A _N. J. A. Sloane_

%E More terms from _James A. Sellers_, May 29 2000