login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003263 Number of representations of n as a sum of distinct Lucas numbers 1,3,4,7,11 ... (A000204).
(Formerly M0045)
30
1, 0, 1, 2, 1, 0, 2, 2, 0, 1, 3, 2, 0, 2, 3, 1, 0, 3, 3, 0, 2, 4, 2, 0, 3, 3, 0, 1, 4, 3, 0, 3, 5, 2, 0, 4, 4, 0, 2, 5, 3, 0, 3, 4, 1, 0, 4, 4, 0, 3, 6, 3, 0, 5, 5, 0, 2, 6, 4, 0, 4, 6, 2, 0, 5, 5, 0, 3, 6, 3, 0, 4, 4, 0, 1, 5, 4, 0, 4, 7, 3, 0, 6, 6, 0, 3, 8, 5, 0, 5, 7, 2, 0, 6, 6, 0, 4, 8, 4, 0, 6, 6, 0, 2, 7 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

REFERENCES

A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 58.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 1..9349

Casey Mongoven, Sonification of multiple Fibonacci-related sequences, Annales Mathematicae et Informaticae, 41 (2013) pp. 175-192.

FORMULA

G.f.: prod(n>=1, 1 + x^L(n) ) where L(n) = A000204(n). - Joerg Arndt, Jul 14 2013

MATHEMATICA

n1 = 10; n2 = LucasL[n1]; Product[1 + x^LucasL[n], {n, 1, n1}] + O[x]^n2 // CoefficientList[#, x]& // Rest (* Jean-Fran├žois Alcover, Feb 17 2017, after Joerg Arndt *)

PROG

(PARI)

L(n)=fibonacci(n+1) + fibonacci(n-1);

N = 66;  x = 'x + O('x^N);

gf = prod(n=1, 11, 1 + x^L(n) );

Vec(gf) \\ Joerg Arndt, Jul 14 2013

CROSSREFS

Cf. A054770, A000204.

Sequence in context: A065676 A281461 A146973 * A271224 A157242 A281423

Adjacent sequences:  A003260 A003261 A003262 * A003264 A003265 A003266

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from James A. Sellers, May 29 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified October 20 05:42 EDT 2017. Contains 293601 sequences.