This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003263 Number of representations of n as a sum of distinct Lucas numbers 1,3,4,7,11 ... (A000204). (Formerly M0045) 32
 1, 0, 1, 2, 1, 0, 2, 2, 0, 1, 3, 2, 0, 2, 3, 1, 0, 3, 3, 0, 2, 4, 2, 0, 3, 3, 0, 1, 4, 3, 0, 3, 5, 2, 0, 4, 4, 0, 2, 5, 3, 0, 3, 4, 1, 0, 4, 4, 0, 3, 6, 3, 0, 5, 5, 0, 2, 6, 4, 0, 4, 6, 2, 0, 5, 5, 0, 3, 6, 3, 0, 4, 4, 0, 1, 5, 4, 0, 4, 7, 3, 0, 6, 6, 0, 3, 8, 5, 0, 5, 7, 2, 0, 6, 6, 0, 4, 8, 4, 0, 6, 6, 0, 2, 7 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 REFERENCES A. Brousseau, Fibonacci and Related Number Theoretic Tables. Fibonacci Association, San Jose, CA, 1972, p. 58. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 1..9349 Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972. See p. 58. Casey Mongoven, Sonification of multiple Fibonacci-related sequences, Annales Mathematicae et Informaticae, 41 (2013) pp. 175-192. FORMULA G.f.: prod(n>=1, 1 + x^L(n) ) where L(n) = A000204(n). - Joerg Arndt, Jul 14 2013 MATHEMATICA n1 = 10; n2 = LucasL[n1]; Product[1 + x^LucasL[n], {n, 1, n1}] + O[x]^n2 // CoefficientList[#, x]& // Rest (* Jean-François Alcover, Feb 17 2017, after Joerg Arndt *) PROG (PARI) L(n)=fibonacci(n+1) + fibonacci(n-1); N = 66;  x = 'x + O('x^N); gf = prod(n=1, 11, 1 + x^L(n) ); Vec(gf) \\ Joerg Arndt, Jul 14 2013 CROSSREFS Cf. A054770, A000204. Sequence in context: A065676 A281461 A146973 * A271224 A157242 A281423 Adjacent sequences:  A003260 A003261 A003262 * A003264 A003265 A003266 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from James A. Sellers, May 29 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 19 05:47 EDT 2018. Contains 316336 sequences. (Running on oeis4.)