Scan A3139
A3140

Entringer
THE NUMBER OF COPRIME CHAINS WITH LARGEST MEMBER n

R. C. ENTRINGER

1. In a previous paper [1] a coprime chain was defined to be an increasing sequence \(\{a_1, \ldots, a_k\} \) of integers greater than 1 which contains exactly one multiple of each prime equal to or less than \(a_k \).

We let \(s(n), n > 1 \), denote the number of coprime chains with largest member \(n \). For convenience we define \(s(1) = 1 \).

In this paper we will obtain a partial recursion formula for \(s(n) \) and an asymptotic formula for \(\log s(n) \). A table of values of \(s(n), n \leq 113 \), is also provided.

In the following \(p \) will designate a prime and \(p_i \) will designate the \(i \)th prime.

2. **Lemma 1.** \(A = \{a_1, \ldots, a_k \neq 2\} \) is a coprime chain iff

 (i) \(A' = \{a_1, \ldots, a_{k-1}\} \) is a coprime chain,

 (ii) \(p_{i-1} \) is the largest prime in \(A' \).

Proof. If \(A = \{a_1, \ldots, a_k \neq 2\} \) is a coprime chain, then

(ii) \(p_{i-1} \) is in \(A \) (and therefore is the largest prime in \(A' \)) since by Bertrand's Postulate \(2p_{i-1} > p_i \), and

(iii) If \(A' \) is not a coprime chain, then there is a prime \(p \leq a_{k-1} \) dividing no member of \(A' \). Thus \(p \) divides (and therefore is equal to) \(a_k \) since \(A \) is a coprime chain, but this is impossible since \(a_{k-1} < a_k \).

To prove the converse we note that if \(A \) is not a coprime chain, then \(p_i \) divides some member of \(A' \) and therefore \(p_{i-1} < a_{k-1}/2 \). But again by Bertrand's Postulate there is a prime between \(a_{k-1}/2 \) and \(a_k \) occurring in \(A' \) which contradicts (ii).

A direct result of this lemma is:

Theorem 2. \(s(p_i) = \sum_{n=p_{i-1}}^{p_i-1} s(n), i \geq 2. \)

Theorem 3. \(s(p) = \sum_{n<p} s(n) \) (\(n \) not prime).

Proof. The assertion holds for \(p = 2 \). Now let \(q \) and \(p \) be successive primes with \(q < p \). If \(s(q) = \sum_{n<q} s(n) \) (\(n \) not prime), then

\[
s(p) = s(q) + \sum_{q<n<p} s(n) = \sum_{n<p} s(n) \quad (n \text{ not prime})
\]

Received by the editors April 27, 1964.

806
then we have a contradiction, while \(yA = (0) \) implies (\(A \) being simple) that \(y = 0 \), which also is a contradiction. Thus we have shown \([U, U] \subset Z\).

This result indeed generalizes the work of [4].

Theorem 4. If \(A \) is simple (then \([A, A] = A\)) and \(U \) is a proper Lie ideal of \([A, A]\), then \(U \) is contained in the center of \(A \) except where \(A \) is of characteristic 2 and 4-dimensional over \(Z \), a field of characteristic 2.

Proof. Define \([U, U] = U^{(1)}\) and \(U^{(n+1)} = [U^{(n)}, U^{(n)}]\) for all \(n \geq 1 \). Then, since \(A \) is simple, it has no nonzero nilpotent ideals. Thus, except in characteristic 2, \([U, U] \subset Z\) or \(U = A. \) If the former, then Theorems 7 and 9 of [4], in the case not characteristic 3, and Lemma 3 of [1] in this case implies \(U \subset Z. \) Now, by these same results, if \(U^{(2)} \subset Z, \) then \(U \subset Z. \) Hence \([U^{(2)}, U] = A. \) Thus, by Lemma 9 of [2] we have \([U^{(2)}, A] = [A, A]\), which contradicts \(U \) being proper. Lemma 1 of [1] yields the result when \(A \) is of characteristic 2.

The author wishes to express his thanks to the referee, I. N. Herstein, for his suggestions.

References

5. ———, *Topics in ring theory*, Univ. of Chicago, Chicago, Ill., 1965.

University of Delaware
by Theorem 2 and the theorem follows by induction.

3. The above result indicates marked irregularities in $s(n)$, however, we can approximate $\log s(n)$ asymptotically.

Theorem 4. $\log s(n) \sim \sqrt{n}$.

Proof. Every coprime chain $A(n)$ can be constructed in the following manner. Let q_i, $i=1, \ldots, k$, $q_i > q_{i+1}$ for $i < j$ be those primes less than \sqrt{n} and not dividing n. Choose any multiple m_1q_1 of q_1 so that $m_1q_1 \leq n$ and $(m_1, n) = 1$. If $q_2 \mid m_1$ let $m_2 = 0$. If $q_2 \not\mid m_1$, choose any multiple m_2q_2 of q_2 so that $m_2q_2 \leq n$ and $(m_2, nm_1q_1) = 1$. This process is continued by choosing $m_i = 0$ if $q_i \mid m_j$ for some $j = 1, \ldots, i - 1$, otherwise choosing any multiple m_iq_i of q_i so that $m_iq_i \leq n$, $(m_i, nm_1q_1 \cdots m_{i-1}q_{i-1}) = 1$. The set $\{m_1q_1, \ldots, m_kq_k\} - \{0\}$ can then be extended to a coprime chain by appending n and those primes p between \sqrt{n} and n which do not divide n or any m_i, and reordering if necessary. This extension is unique since any multiple of a prime p, other than p itself, must either be larger than n, not relatively prime to n, or not relatively prime to all m_iq_i. Therefore

$$\log s(n) \leq \log \left[\frac{n}{p} \right] \leq \sum_{p \leq \sqrt{n}} \log n - \sum_{p \leq \sqrt{n}} \log p = \{1 + o(1)\} \sqrt{n}.$$

To obtain a lower bound for $\log s(n)$, coprime chains are constructed by choosing the m_i in the following manner. Let m_1 be 1 or any prime satisfying $\sqrt{n} < m_1 \leq n/q_1$, $m_1 \mid n$. There are at least $\pi(n/q_1) - \pi(\sqrt{n}) - 1$ choices for m_1 since there is at most one prime in the given range which divides n. Let m_2, be 1 or any prime satisfying $\sqrt{n} < m_2 \leq n/q_2$, $m_2 \mid nm_1$. There are at least $\pi(n/q_2) - \pi(\sqrt{n}) - 2$ choices for m_2. This process is continued until all multiples m_iq_i have been chosen. In general there are at least

$$\pi\left(\frac{n}{q_i}\right) - \pi(\sqrt{n}) - i \geq \pi\left(\frac{n}{q_i}\right) - \pi(\sqrt{n}) - \{\pi(\sqrt{n}) - \pi(q_i)\}$$

$$= \pi\left(\frac{n}{q_i}\right) - 2\pi(\sqrt{n}) + \pi(q_i)$$

choices for m_i. The set $\{m_1q_1, \ldots, m_kq_k\}$ is then extended to a coprime chain as previously indicated. If $\pi(n/q_i) - 2\pi(\sqrt{n}) + \pi(q_i) \leq 0$, then m_i is chosen to be 1; hence the above construction is valid.

In the remainder of the proof we assume ϵ given such that $0 < \epsilon < 1/2$. Define δ by $n^\epsilon/\delta = 2(1 - \epsilon) \sqrt{n}$, $1/\log n < \delta < 1/2$. Then using certain results from [2] we have
\[
\log s(n) \geq \sum_{p \leq \sqrt{n}; \ p \nmid n} \log \left\{ \pi \left(\frac{n}{p} \right) - 2\pi(\sqrt{n}) + \pi(p) \right\}
\]

\[
\Rightarrow \sum_{n \leq \sqrt{n}; \ p \nmid n} \log \left\{ \frac{n}{p} - \frac{4\sqrt{n}}{\log n - 3} + \frac{p}{\log p} \right\} - \sum_{p | n} \log 2n
\]

\[
= \sum_{p \leq \sqrt{n}} \log \left(\frac{n}{p} \right) - \frac{4\sqrt{n}}{\log n - 3} + \frac{p}{\log p}
\]

\[
+ \sum_{p \leq \sqrt{n}} \log \left\{ \frac{n}{p} - \left(\frac{4\sqrt{n}}{\log n - 3} + \frac{p}{\log p} \right) \frac{p}{n} \log \frac{n}{p} \right\} + o(\sqrt{n})
\]

provided that

\[
\frac{n}{\log n - 3} - \frac{4\sqrt{n}}{\log n - 3} + \frac{p}{\log p} > 0 \quad \text{for} \quad p \leq n^{\frac{1}{4}}.
\]

(1)

Now for sufficiently large \(n \)

\[
\sum_{p \leq \sqrt{n}} \log \left(\frac{n}{p} \right) = \{1 + o(1)\} \left(\frac{\delta}{\log n - 3} - n^{\frac{1}{4}} \right) + o(\sqrt{n}),
\]

\[
= \{1 + o(1)\} 2(1 - \delta)(1 - \epsilon)\sqrt{n} \geq (1 - \epsilon)^2\sqrt{n};
\]

hence it remains only to show (1) and

\[
- \sum_{p \leq \sqrt{n}} \log \left\{ \frac{n}{p} - \left(\frac{4\sqrt{n}}{\log n - 3} + \frac{p}{\log p} \right) \frac{p}{n} \log \frac{n}{p} \right\} = o(\sqrt{n}).
\]

Noting that \(p \log (n/p) \) and \(p^2(1 - \log n/\log p) \) are increasing functions of \(p \) for \(p \leq \sqrt{n} \) and \(n \) sufficiently large we have

\[
\left(\frac{4\sqrt{n}}{\log n - 3} - \frac{p}{\log p} \right) p \log \frac{n}{p} = \frac{4\sqrt{n}}{\log n - 3} p \log \frac{n}{p} + p^2 \left(1 - \frac{\log n}{\log p} \right)
\]

\[
\leq \frac{4\sqrt{n}}{\log n - 3} n^\delta (1 - \delta) \log n + n^{2\delta} \left(1 - \frac{1}{\delta} \right)
\]

\[
= 4(1 - \delta)(1 - \epsilon)\delta n \left(\frac{2 \log n}{\log n - 3} - 1 + \epsilon \right)
\]

\[
\leq (1 - \epsilon) n(2 + \epsilon^2 - 1 + \epsilon) = (1 - \epsilon^2) n
\]

for all sufficiently large \(n \). Hence (1) holds and
\[
\sum_{p \leq n} \log \left(1 - \left(\frac{4\sqrt{n}}{\log n - 3} - \frac{\phi}{\log \phi} \right) \frac{\phi}{n} \log \frac{n}{\phi} \right) \geq \sum_{p \leq n} 3 \log \epsilon \geq 8 \frac{\sqrt{n}}{\log n} \log \epsilon
\]

which completes the proof.

<table>
<thead>
<tr>
<th>(n)</th>
<th>(s(n))</th>
<th>(e^{s(n)})</th>
<th>(n)</th>
<th>(s(n))</th>
<th>(e^{s(n)})</th>
<th>(n)</th>
<th>(s(n))</th>
<th>(e^{s(n)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>4.11</td>
<td>40</td>
<td>6</td>
<td>2.84</td>
<td>77</td>
<td>391</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>5.65</td>
<td>41</td>
<td>212</td>
<td></td>
<td>78</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3.83</td>
<td>42</td>
<td>2</td>
<td>879</td>
<td>79</td>
<td>2005</td>
<td>3.61</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>4.73</td>
<td>43</td>
<td>214</td>
<td>3.29</td>
<td>80</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td></td>
<td>44</td>
<td>15</td>
<td>81</td>
<td>228</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td></td>
<td>45</td>
<td>12</td>
<td>82</td>
<td>117</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td></td>
<td>46</td>
<td>19</td>
<td>83</td>
<td>3275</td>
<td>3.81</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td></td>
<td>47</td>
<td>260</td>
<td>3.65</td>
<td>84</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td></td>
<td>48</td>
<td>3</td>
<td>85</td>
<td>447</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>3.06</td>
<td>49</td>
<td>154</td>
<td>86</td>
<td>142</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>3.68</td>
<td>50</td>
<td>11</td>
<td>87</td>
<td>292</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>10</td>
<td>3.06</td>
<td>51</td>
<td>62</td>
<td>88</td>
<td>91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>5.65</td>
<td>52</td>
<td>31</td>
<td>89</td>
<td>3351</td>
<td>7.31</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>4</td>
<td>5.65</td>
<td>53</td>
<td>521</td>
<td>2.78</td>
<td>90</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>3</td>
<td></td>
<td>54</td>
<td>5</td>
<td>91</td>
<td>715</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>19</td>
<td>3.25</td>
<td>55</td>
<td>129</td>
<td>92</td>
<td>175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>3.80</td>
<td>56</td>
<td>19</td>
<td>93</td>
<td>392</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td></td>
<td>57</td>
<td>90</td>
<td>94</td>
<td>213</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td></td>
<td>58</td>
<td>54</td>
<td>95</td>
<td>826</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td></td>
<td>59</td>
<td>818</td>
<td>2.64</td>
<td>96</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>4</td>
<td></td>
<td>60</td>
<td>2</td>
<td>97</td>
<td>5698</td>
<td>3.32</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>32</td>
<td>3.79</td>
<td>61</td>
<td>820</td>
<td>3.03</td>
<td>98</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>1</td>
<td></td>
<td>62</td>
<td>54</td>
<td>99</td>
<td>312</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>21</td>
<td></td>
<td>63</td>
<td>44</td>
<td>100</td>
<td>47</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>7</td>
<td></td>
<td>64</td>
<td>57</td>
<td>101</td>
<td>6122</td>
<td>3.78</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>16</td>
<td></td>
<td>65</td>
<td>207</td>
<td>102</td>
<td>19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>7</td>
<td></td>
<td>66</td>
<td>7</td>
<td>103</td>
<td>6141</td>
<td>4.16</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>84</td>
<td></td>
<td>67</td>
<td>1189</td>
<td>3.01</td>
<td>104</td>
<td>166</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>1</td>
<td>3.08</td>
<td>68</td>
<td>62</td>
<td>105</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>85</td>
<td></td>
<td>69</td>
<td>147</td>
<td>106</td>
<td>269</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>9</td>
<td></td>
<td>70</td>
<td>8</td>
<td>107</td>
<td>6500</td>
<td>4.28</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>18</td>
<td></td>
<td>71</td>
<td>1406</td>
<td>3.24</td>
<td>108</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>11</td>
<td></td>
<td>72</td>
<td>9</td>
<td>109</td>
<td>6623</td>
<td>5.16</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td></td>
<td>73</td>
<td>1415</td>
<td>3.63</td>
<td>110</td>
<td>31</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>3</td>
<td>2.72</td>
<td>74</td>
<td>80</td>
<td>111</td>
<td>540</td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>161</td>
<td></td>
<td>75</td>
<td>37</td>
<td>112</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>15</td>
<td></td>
<td>76</td>
<td>73</td>
<td>113</td>
<td>7270</td>
<td>5.69</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>30</td>
<td></td>
<td>77</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. The table on the preceding page lists the value of $s(n)$ for all $n \leq 113$. All entries for $s(n)$ were computed individually and checked by means of Theorem 2.

REFERENCES

University of New Mexico

ON THE CONTENT OF POLYNOMIALS

FRED KRAKOWSKI

1. **Introduction.** The content $C(f)$ of a polynomial f with coefficients in the ring R of integers of some algebraic number field K is the ideal in R generated by the set of coefficients of f. This notion plays an important part in the classical theory of algebraic numbers. Answering a question posed to the author by S. K. Stein, we show in the present note that content, as a function on $R[x]$ with values in the set J of ideals of R, is characterized by the following three conditions:

1. $C(f)$ depends only on the set of coefficients of f;
2. if f is a constant polynomial, say $f(x) = a$, $a \in R$, then $C(f) = (a)$, where (a) denotes the principal ideal generated by a;
3. $C(f \cdot g) = C(f) \cdot C(g)$ (Theorem of Gauss-Kronecker, see [1, p. 105]).

2. **Characterization of content.** Denote by $[f]$ the set of nonzero coefficients of $f \in R[x]$ and call f, g equivalent, of $f \sim g$, if $[f] = [g]$. A polynomial is said to be primitive if its coefficients are rational integers and if the g.c.d. of its coefficients is 1.

Lemma. Let S be a set of polynomials with coefficients in R and suppose it satisfies:

1. $1 \in S$;
2. if $f \in S$ and $f \sim g$, then $g \in S$;
3. if $f \cdot g \in S$, then $f \in S$ and $g \in S$.

Then S contains all primitive polynomials.

Received by the editors April 27, 1964.