login
Number of hexagonal n-element polyominoes whose graph is a path.
(Formerly M1208)
11

%I M1208 #30 Feb 16 2023 19:09:27

%S 1,1,2,4,10,24,67,182,520,1474,4248,12196,35168,101226,291565,838764,

%T 2412033,6929754,19896915,57084939

%N Number of hexagonal n-element polyominoes whose graph is a path.

%C In other words, number of 2-sided strip polyhexes with n cells.

%D E. M. Palmer, Variations of the cell growth problem, Lect. Notes Math. 303 (1972), 215-224.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%D N. Trinajstić, S. Nikolić, J. V. Knop, W. R. Müller and K. Szymanski, Computational Chemical Graph Theory: Characterization, Enumeration, and Generation of Chemical Structures by Computer Methods, Ellis Horwood, 1991.

%H A. T. Balaban, J. Brunvoll, B. N. Cyvin & S. J. Cyvin, <a href="https://doi.org/10.1016/S0040-4020(01)85110-3">Enumeration of branched catacondensed benzenoid hydrocarbons and their numbers of Kekulé structures</a> Tetrahedron, 44(1) (1988), 221-228. See Table 1.

%H Wenchen He and Wenjie He, <a href="https://doi.org/10.1016/S0040-4020(01)82078-0">Generation and enumeration of planar polycyclic aromatic hydrocarbons</a>, Tetrahedron 42.19 (1986): 5291-5299. See Table 1, column B.

%H Ed Pegg, Jr., <a href="http://demonstrations.wolfram.com/PolyformExplorer/">Illustrations of polyforms</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Polyhex.html">Polyhex</a>

%Y Cf. A323931, A323932.

%K nonn,more

%O 1,3

%A _N. J. A. Sloane_

%E a(8)-a(12) from _Ed Pegg Jr_, May 13 2009

%E a(13)-a(19) from _Joseph Myers_, Nov 26 2010

%E a(20) from Trinajstić et al. (Table 4.2, the number of cata-condensed benzenoids with h hexagons, unbranched) added by _Andrey Zabolotskiy_, Feb 08 2023