%I M4190
%S 6,30,42,54,60,66,78,90,100,102,114,126,140,148,194,196,208,220,238,
%T 244,252,274,288,292,300,336,348,350,364,374,380,382,386,388,400,420,
%U 436,440,476,482,484,492,516,528,540,542,550,570,578,592,600,612,648,660,680,688,694,708,720,722,740,756,758,764,766,770,780,784,792,794,812
%N Beginnings of periodic unitary aliquot sequences.
%C Provided that A034460 has no infinite unbounded trajectories, these are also numbers n such that when iterating the map k > A034460(k), starting from k = n, the iteration will never reach 0, that is, will instead eventually enter into a finite cycle.  _Antti Karttunen_, Sep 23 2018
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%D H. J. J. Te Riele, Unitary Aliquot Sequences. Report MR139/72, Mathematisch Centrum, Amsterdam, September 1972.
%H Antti Karttunen, <a href="/A003062/b003062.txt">Table of n, a(n) for n = 1..20000</a>
%o (PARI)
%o up_to = 20000;
%o A034460(n) = (sumdivmult(n, d, if(gcd(d, n/d)==1, d))n); \\ From A034460
%o A318880(n) = { my(visited = Map()); for(j=1, oo, if(mapisdefined(visited, n), return(1), mapput(visited, n, j)); n = A034460(n); if(!n,return(0))); };
%o A003062list(up_to) = { my(v = vector(up_to), k=0, n=1); while(k<up_to,if(A318880(n), k++; v[k] = n); n++); (v); };
%o v003062 = A003062list(up_to);
%o A003062(n) = v003062[n]; \\ _Antti Karttunen_, Sep 23 2018
%Y Cf. A034460, A097010 (complement), A318880 (characteristic function).
%Y Cf. also A002827, A063991, A097024, A097030, A097034, A097035, A097036, A097037.
%K nonn
%O 1,1
%A _N. J. A. Sloane_.
%E More terms from _Antti Karttunen_, Sep 23 2018
