

A003040


Highest degree of an irreducible representation of symmetric group S_n of degree n.
(Formerly M0811)


8



1, 1, 2, 3, 6, 16, 35, 90, 216, 768, 2310, 7700, 21450, 69498, 292864, 1153152, 4873050, 16336320, 64664600, 249420600, 1118939184, 5462865408, 28542158568, 117487079424, 547591590000, 2474843571200, 12760912164000, 57424104738000, 295284192952320
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Highest number of standard tableaux of the Ferrers diagrams of the partitions of n. Example: a(4) = 3 because to the partitions 4, 31, 22, 211, and 1111 there correspond 1, 3, 2, 3, and 1 standard tableaux, respectively.  Emeric Deutsch, Oct 02 2015


REFERENCES

J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups. Oxford Univ. Press, 1985.
D. E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups. 2nd ed., Oxford University Press, 1950, p. 265.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Eric M. Schmidt, Table of n, a(n) for n = 1..80
S. Comét, Improved methods to calculate the characters of the symmetric group, Math. Comp. 14 (1960) 104117.
J. McKay, The largest degrees of irreducible characters of the symmetric group. Math. Comp. 30 (1976), no. 135, 624631. (Gives first 75 terms.)
J. McKay, Page 1 of 5 pages of tables from Math. Comp. paper [reports 29th term incorrectly]
J. McKay, Page 2 of 5 pages of tables from Math. Comp. paper
J. McKay, Page 3 of 5 pages of tables from Math. Comp. paper
J. McKay, Page 4 of 5 pages of tables from Math. Comp. paper
J. McKay, Page 5 of 5 pages of tables from Math. Comp. paper
Igor Pak, Greta Panova, Damir Yeliussizov, On the largest Kronecker and LittlewoodRichardson coefficients, arXiv:1804.04693 [math.CO], 2018.
R. P. Stanley, Letter to N. J. A. Sloane, c. 1991


EXAMPLE

a(5) = 6 because the degrees for S_5 are 1,1,4,4,5,5,6.


PROG

(Sage)
def A003040(n) :
....res = 1
....for P in Partitions(n) :
........res = max(res, P.dimension())
....return res
end # Eric M. Schmidt, May 07 2013


CROSSREFS

A117500 gives the corresponding partitions of n.
Cf. A003869, A003870, A003871, A003872, A003873, A003874, A003875, A003876, A003877.
Sequence in context: A215659 A028688 A030753 * A126317 A079437 A061220
Adjacent sequences: A003037 A003038 A003039 * A003041 A003042 A003043


KEYWORD

nonn


AUTHOR

N. J. A. Sloane and Richard Stanley


EXTENSIONS

Entry revised and extended by N. J. A. Sloane, Apr 28 2006
a(29) corrected by Eric M. Schmidt, May 07 2013


STATUS

approved



