login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002991 Number of n-node trees with a forbidden limb of length 5.
(Formerly M0725)
2
1, 1, 1, 1, 2, 3, 5, 10, 21, 43, 97, 215, 503, 1187, 2876, 7033, 17510, 43961, 111664, 285809, 737632, 1915993, 5008652, 13163785, 34774873, 92282214, 245930746, 657931603, 1766481135, 4758553683, 12858286083, 34844908142, 94681272368 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

A tree with a forbidden limb of length k is a tree where the path from any leaf inward hits a branching node or another leaf within k steps. - Christian G. Bower, Dec 15 1999

REFERENCES

A. J. Schwenk, Almost all trees are cospectral, pp. 275-307 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

A. J. Schwenk, Letter to N. J. A. Sloane, Aug 1972

Index entries for sequences related to trees

FORMULA

G.f.: 1+B(x)+(B(x^2)-B(x)^2)/2 where B(x) is g.f. of A052328. - Christian G. Bower, Dec 15 1999

a(n) ~ c * d^n / n^(5/2), where d = 2.9447916575019743775137795109303..., c = 0.521642401804532770865780146005... . - Vaclav Kotesovec, Aug 25 2014

MAPLE

with(numtheory):

g:= proc(n) g(n):= `if`(n=0, 1, add(add(d*(g(d-1)-

      `if`(d=5, 1, 0)), d=divisors(j))*g(n-j), j=1..n)/n)

    end:

a:= n-> `if`(n=0, 1, g(n-1)+(`if`(irem(n, 2, 'r')=0,

         g(r-1), 0)-add(g(i-1)*g(n-i-1), i=1..n-1))/2):

seq(a(n), n=0..40);  # Alois P. Heinz, Jul 06 2014

MATHEMATICA

g[n_] := g[n] = If[n == 0, 1, Sum[Sum[d*(g[d-1]-If[d == 5, 1, 0]), {d, Divisors[j] }]*g[n-j], {j, 1, n}]/n]; a[n_] := If[n == 0, 1, g[n-1] + (If[Mod[n, 2 ] == 0, g[Quotient[n, 2]-1], 0] - Sum[g[i-1]*g[n-i-1], {i, 1, n-1}])/2]; Table[a[n], {n, 0, 40}] (* Jean-Fran├žois Alcover, Feb 26 2015, after Alois P. Heinz *)

CROSSREFS

Cf. A002955, A002988-A002992, A052318-A052329.

Sequence in context: A132418 A024494 A131708 * A218532 A022861 A001646

Adjacent sequences:  A002988 A002989 A002990 * A002992 A002993 A002994

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Christian G. Bower, Dec 15 1999

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 20 12:38 EST 2019. Contains 320327 sequences. (Running on oeis4.)