login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002989 Number of n-node trees with a forbidden limb of length 3.
(Formerly M1082)
2
1, 1, 1, 1, 1, 2, 4, 7, 14, 28, 61, 131, 297, 678, 1592, 3770, 9096, 22121, 54451, 135021, 337651, 849698, 2152048, 5479408, 14022947, 36048514, 93061268, 241160180, 627179689, 1636448181, 4282964600, 11241488853, 29584389474 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,6

COMMENTS

A tree with a forbidden limb of length k is a tree where the path from any leaf inward hits a branching node or another leaf within k steps.

REFERENCES

A. J. Schwenk, Almost all trees are cospectral, pp. 275-307 of F. Harary, editor, New Directions in the Theory of Graphs. Academic Press, NY, 1973.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..1000

Index entries for sequences related to trees

FORMULA

G.f.: 1+B(x)+(B(x^2)-B(x)^2)/2 where B(x) is g.f. of A050321.

a(n) ~ c * d^n / n^(5/2), where d = 2.851157026715821487965080545784..., c = 0.463162985533004672966744142107... . - Vaclav Kotesovec, Aug 24 2014

MAPLE

with(numtheory):

g:= proc(n) g(n):= `if`(n=0, 1, add(add(d*(g(d-1)-

      `if`(d=3, 1, 0)), d=divisors(j))*g(n-j), j=1..n)/n)

    end:

a:= n-> `if`(n=0, 1, g(n-1)+(`if`(irem(n, 2, 'r')=0,

         g(r-1), 0)-add(g(i-1)*g(n-i-1), i=1..n-1))/2):

seq(a(n), n=0..40);  # Alois P. Heinz, Jul 06 2014

CROSSREFS

Cf. A002955, A002988-A002992, A052318-A052329.

Sequence in context: A119341 A119342 A119268 * A000671 A199888 A157133

Adjacent sequences:  A002986 A002987 A002988 * A002990 A002991 A002992

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms, formula and comments from Christian G. Bower, Dec 15 1999.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 21 22:06 EST 2014. Contains 249791 sequences.