login
Continued fraction for fifth root of 2.
(Formerly M4044)
5

%I M4044 #45 Jul 05 2024 11:10:17

%S 1,6,1,2,1,1,1,3,25,1,4,3,3,7,52,1,2,3,2,15,2,2,4,16,2,7,1,1,1,10,21,

%T 1,1,1,141,2,4,1,4,2,1,1,17,1,3,3,4,1,3,1,3,2,1,1,2,33,1,6,6,1,2,4,1,

%U 21,1,3,3,8,10,1,46,6,1,10,1,1,1,1,2,11,1,3,1

%N Continued fraction for fifth root of 2.

%D H. P. Robinson, Letter to N. J. A. Sloane, Nov 13 1973.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Harry J. Smith, <a href="/A002950/b002950.txt">Table of n, a(n) for n = 0..19999</a>

%H Herman P. Robinson, <a href="/A003116/a003116.pdf">Letter to N. J. A. Sloane, Nov 13 1973</a>.

%H J. Shallit & N. J. A. Sloane, <a href="/A002949/a002949.pdf">Correspondence 1974-1975</a>

%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>

%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>

%e 2^(1/5) = 1.148698354997035006798626946... = 1 + 1/(6 + 1/(1 + 1/(2 + 1/(1 + ...)))). - _Harry J. Smith_, May 12 2009

%p with(numtheory):

%p cfrac(2^(1/5),100,'quotients'); # _Muniru A Asiru_, Nov 02 2018

%t ContinuedFraction[2^(1/5), 100] (* _G. C. Greubel_, Nov 02 2018 *)

%o (PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(2^(1/5)); for (n=1, 20000, write("b002950.txt", n-1, " ", x[n])); } \\ _Harry J. Smith_, May 12 2009

%o (Magma) SetDefaultRealField(RealField(100)); ContinuedFraction(2^(1/5)); // _G. C. Greubel_, Nov 02 2018

%Y Cf. A005531 (decimal expansion).

%Y Cf. A002361, A002362 (convergents).

%K nonn,cofr

%O 0,2

%A _N. J. A. Sloane_, _Herman P. Robinson_

%E Offset changed by _Andrew Howroyd_, Jul 05 2024