login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002945 Continued fraction for cube root of 2.
(Formerly M2220)
10

%I M2220

%S 1,3,1,5,1,1,4,1,1,8,1,14,1,10,2,1,4,12,2,3,2,1,3,4,1,1,2,14,3,12,1,

%T 15,3,1,4,534,1,1,5,1,1,121,1,2,2,4,10,3,2,2,41,1,1,1,3,7,2,2,9,4,1,3,

%U 7,6

%N Continued fraction for cube root of 2.

%D H. P. Robinson, Letter to N. J. A. Sloane, Nov 13 1973.

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Harry J. Smith, <a href="/A002945/b002945.txt">Table of n, a(n) for n = 1..20000</a>

%H BCMATH, <a href="http://www.numbertheory.org/php/cfrac_nthroot.html">Continued fraction expansion of the n-th root of a positive rational</a>

%H E. Bombieri and A. J. van der Poorten, <a href="http://maths.mq.edu.au/~alf/www-centre/alfpapers/a113.pdf">Continued fractions of algebraic numbers</a>

%H Ashok Kumar Gupta and Ashok Kumar Mittal, <a href="http://arxiv.org/abs/math/0002227">Bifurcating continued fractions</a>, arXiv:math/0002227 [math.GM] (2000).

%H S. Lang and H. Trotter, <a href="http://dx.doi.org/10.1515/crll.1972.255.112">Continued fractions for some algebraic numbers</a>, J. Reine Angew. Math. 255 (1972), 112-134.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DelianConstant.html">Delian Constant</a>

%H G. Xiao, <a href="http://wims.unice.fr/~wims/en_tool~number~contfrac.en.html">Contfrac</a>

%H <a href="/index/Con#confC">Index entries for continued fractions for constants</a>

%F Bombieri/van der Poorten give a complicated formula:

%F a(n) = floor((-1)^(n+1)*3*p(n)^2/(q(n)*(p(n)^3-2*q(n)^3)) - q(n-1)/q(n)),

%F p(n+1) = a(n)*p(n) + p(n-1),

%F q(n+1) = a(n)*q(n) + q(n-1),

%F with a(1) = 1, p(1) = 1, q(1) = 0, p(2) = 1, q(2) = 1. - _Robert Israel_, Jul 30 2014

%e 2^(1/3) = 1.25992104989487316... = 1 + 1/(3 + 1/(1 + 1/(5 + 1/(1 + ...)))).

%p N:= 100: # to get a(1) to a(N)

%p a[1] := 1: p[1] := 1: q[1] := 0: p[2] := 1: q[2] := 1:

%p for n from 2 to N do

%p a[n] := floor((-1)^(n+1)*3*p[n]^2/(q[n]*(p[n]^3-2*q[n]^3)) - q[n-1]/q[n]);

%p p[n+1] := a[n]*p[n] + p[n-1];

%p q[n+1] := a[n]*q[n] + q[n-1];

%p od:

%p seq(a[i],i=1..N); # _Robert Israel_, Jul 30 2014

%t ContinuedFraction[Power[2, (3)^-1],70] (* _Harvey P. Dale_, Sep 29 2011 *)

%o (PARI) allocatemem(932245000); default(realprecision, 21000); x=contfrac(2^(1/3)); for (n=1, 20000, write("b002945.txt", n, " ", x[n])); \\ _Harry J. Smith_, May 08 2009

%Y Cf. A002946, A002947, A002948, A002949, A002580 (decimal expansion).

%K cofr,nonn

%O 1,2

%A _N. J. A. Sloane_.

%E BCMATH link from Keith R Matthews (keithmatt(AT)gmail.com), Jun 04 2006

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 9 06:36 EST 2016. Contains 278963 sequences.