%I M4549 N1933 #45 May 06 2024 12:56:33
%S 0,0,1,8,60,416,2791,18296,118016,752008,4746341,29727472,185016612,
%T 1145415208,7059265827,43338407712,265168691392,1617656173824,
%U 9842665771649,59748291677832,361933688520940,2188328005246304,13208464812265559,79600379336505560,479025509574159232
%N Low temperature series for spin-1/2 Ising magnetic susceptibility on 2D square lattice.
%C The zero-field susceptibility per spin is 4m^2/kT * Sum_{n >= 0} a(n) * u^n, where u = exp(-4J/kT). (m is the magnetic moment of a single spin; this factor may be present or absent depending on the precise definition of the susceptibility.) The b-file has been obtained from the series by Guttmann and Jensen via the substitution r = u/(1-u)^2 and dividing by 4. - _Andrey Zabolotskiy_, Feb 11 2022
%D C. Domb, Ising model, in Phase Transitions and Critical Phenomena, vol. 3, ed. C. Domb and M. S. Green, Academic Press, 1974; p. 421.
%D S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 391-406.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Andrey Zabolotskiy, <a href="/A002927/b002927.txt">Table of n, a(n) for n = 0..1305</a>
%H R. J. Baxter and I. G. Enting, <a href="https://doi.org/10.1007/BF01008694">Series expansions for corner transfer matrices: the square lattice Ising model</a>, J. Stat. Physics 21 (1979) 103-123.
%H C. Domb, <a href="/A007239/a007239.pdf">Ising model</a>, Phase Transitions and Critical Phenomena 3 (1974), 257, 380-381, 384-387, 390-391, 412-423. (Annotated scanned copy)
%H I. G. Enting, A, J. Guttmann and I. Jensen, <a href="https://arxiv.org/abs/hep-lat/9410005">Low-Temperature Series Expansions for the Spin-1 Ising Model</a>, arXiv:hep-lat/9410005, 1994; J. Phys. A. 27 (1994) 6987-7005.
%H J. W. Essam and M. E. Fisher, <a href="http://dx.doi.org/10.1063/1.1733766">Padé approximant studies of the lattice gas and Ising ferromagnet below the critical point</a>, J. Chem. Phys., 38 (1963), 802-812.
%H Steven R. Finch, <a href="http://www.people.fas.harvard.edu/~sfinch/constant/ising/ising.html">Lenz-Ising Constants</a> [broken link]
%H Steven R. Finch, <a href="http://web.archive.org/web/20010207201511/http://www.mathsoft.com:80/asolve/constant/ising/ising.html">Lenz-Ising Constants</a> [From the Wayback Machine]
%H Tony Guttmann, <a href="https://web.archive.org/web/20090705023809 /http://www.ms.unimelb.edu.au/~tonyg/">Homepage</a>. See Numerical Data, Ising square lattice susceptibility series, Low temperature series.
%H Iwan Jensen, <a href="https://web.archive.org/web/20090705035447if_ /http://www.ms.unimelb.edu.au/~iwan/ising/Ising_ser.html">Series for the Ising model</a>
%F a(n) ~ c * n^(3/4) * (1 + sqrt(2))^(2*n), where c = 0.0187325517235678... - _Vaclav Kotesovec_, May 06 2024
%Y Cf. A002906 (high-temperature), A002979 (antiferromagnetic susceptibility), A029872 (specific heat), A002928 (magnetization), A002890 (partition function), A047709 (hexagonal lattice), A002912 (honeycomb), A002926 (cubic lattice), A010115 (spin-1 Ising).
%K nonn
%O 0,4
%A _N. J. A. Sloane_, _Simon Plouffe_
%E Corrections and updates from _Steven Finch_
%E a(0) = a(1) = 0 prepended, terms a(20) and beyond added by _Andrey Zabolotskiy_, Feb 10 2022