%I M0381 N0143 #49 Nov 07 2023 20:42:57
%S 1,0,1,1,2,2,9,11,37,79,249,671,2182,6692,22131,72405,243806,822788,
%T 2815119,9679205,33551192,116900081,409675567,1442454215,5102542680,
%U 18124571838,64634480340,231334873091,830828150081,2993489821771
%N Number of 3-connected nets with n edges.
%C Also, the number of 3-connected quadrangulations without separating 4-cycles (up to orientation) with n faces. - _Andrey Zabolotskiy_, Sep 20 2019
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H C. J. Bouwkamp & N. J. A. Sloane, <a href="/A000162/a000162.pdf">Correspondence, 1971</a>
%H J. A. D. Cameron, <a href="https://sydney.primo.exlibrisgroup.com/permalink/61USYD_INST/1c0ug48/alma991027133829705106">Searching for Squared Squares</a>, USYD Master of Science Thesis (1976). Rare Books & Special Collections Fisher Library, Sydney University.
%H J. A. D. Cameron, <a href="/A002880/a002880.jpg">Table 7.2 - listing of tri-connected planar graphs by edge</a>, from the thesis - this was the first count of order 20 (22131). Photo by Stuart E Anderson.
%H G. Brinkmann, S. Greenberg, C. Greenhill, B. D. McKay, R. Thomas, and P. Wollan, <a href="http://dx.doi.org/10.1016/j.disc.2005.10.005">Generation of simple quadrangulations of the sphere</a>, Discr. Math., 305 (2005), 33-54.
%H Gunnar Brinkmann and Brendan McKay, <a href="http://users.cecs.anu.edu.au/~bdm/plantri/">plantri and fullgen</a> programs for generation of certain types of planar graph.
%H Gunnar Brinkmann and Brendan McKay, <a href="/A000103/a000103_1.pdf">plantri and fullgen</a> programs for generation of certain types of planar graph [Cached copy, pdf file only, no active links, with permission]
%H CombOS - Combinatorial Object Server, <a href="http://combos.org/plantri">generate planar graphs</a>
%H M. B. Dillencourt, <a href="http://dx.doi.org/10.1006/jctb.1996.0008">Polyhedra of small orders and their Hamiltonian properties</a>, Journal of Combinatorial Theory Series B 66:1 (1996), 87-122.
%H P. J. Federico, <a href="http://dx.doi.org/10.1016/S0021-9800(69)80050-5">Enumeration of polyhedra: the number of 9-hedra</a>, J. Combin. Theory, 7 (1969), 155-161.
%H N. D. Kazarinoff and R. Weitzenkamp, <a href="http://www.jstor.org/stable/2319394">Squaring rectangles and squares</a>, Amer. Math. Monthly, 80 (1973), 877-888.
%e G.f. = x^6 + x^8 + x^9 + 2*x^10 + 2*x^11 + 9*x^12 + 11*x^13 + 37*x^14 + ...
%Y Cf. A002840, A002841, A113201, A078666, A007022, A113205, A338511.
%K nonn,nice
%O 6,5
%A _N. J. A. Sloane_