login
a(n) = binomial(n,floor(n/2))*(n+1)!.
(Formerly M2035 N0806)
3

%I M2035 N0806 #43 Sep 04 2018 16:58:41

%S 1,2,12,72,720,7200,100800,1411200,25401600,457228800,10059033600,

%T 221298739200,5753767219200,149597947699200,4487938430976000,

%U 134638152929280000,4577697199595520000,155641704786247680000

%N a(n) = binomial(n,floor(n/2))*(n+1)!.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A002867/b002867.txt">Table of n, a(n) for n = 0..100</a>

%H Victor Meally, <a href="/A002868/a002868.pdf">Comparison of several sequences given in Motzkin's paper "Sorting numbers for cylinders...", letter to N. J. A. Sloane, N. D.</a>

%H T. S. Motzkin, <a href="/A000262/a000262.pdf">Sorting numbers for cylinders and other classification numbers</a>, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]

%H OEIS Wiki, <a href="http://oeis.org/wiki/Sorting_numbers">Sorting numbers</a>

%F a(n) = 2^n * A000246(n+1).

%F E.g.f.: 1/(sqrt(1+2*x)*(1-2*x)^(3/2)) = 1/(sqrt(1-4*x^2)*(1-2*x)). - _Paul Barry_, Jul 22 2005

%F Conjecture: a(n) - 2*a(n-1) - 4*n*(n-1)*a(n-2) = 0. - _R. J. Mathar_, Nov 24 2012

%t Table[Binomial[n,Floor[n/2]](n+1)!,{n,0,20}] (* _Harvey P. Dale_, Sep 04 2018 *)

%Y Cf. A000246.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_

%E More terms from _James A. Sellers_, Jul 10 2000