login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002867 a(n) = binomial(n,floor(n/2))*(n+1)!.
(Formerly M2035 N0806)
3
1, 2, 12, 72, 720, 7200, 100800, 1411200, 25401600, 457228800, 10059033600, 221298739200, 5753767219200, 149597947699200, 4487938430976000, 134638152929280000, 4577697199595520000, 155641704786247680000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..100

Victor Meally, Comparison of several sequences given in Motzkin's paper "Sorting numbers for cylinders...", letter to N. J. A. Sloane, N. D.

T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. [Annotated, scanned copy]

OEIS Wiki, Sorting numbers

FORMULA

a(n) = 2^n * A000246(n+1).

E.g.f.: 1/(sqrt(1+2*x)*(1-2*x)^(3/2)) = 1/(sqrt(1-4*x^2)*(1-2*x)). - Paul Barry, Jul 22 2005

Conjecture: a(n) - 2*a(n-1) - 4*n*(n-1)*a(n-2) = 0. - R. J. Mathar, Nov 24 2012

MATHEMATICA

Table[Binomial[n, Floor[n/2]](n+1)!, {n, 0, 20}] (* Harvey P. Dale, Sep 04 2018 *)

CROSSREFS

Cf. A000246.

Sequence in context: A296975 A144086 A005443 * A235359 A130426 A002397

Adjacent sequences:  A002864 A002865 A002866 * A002868 A002869 A002870

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from James A. Sellers, Jul 10 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 06:30 EDT 2019. Contains 322237 sequences. (Running on oeis4.)