

A002840


Number of polyhedral graphs with n edges.
(Formerly M0339 N0129)


9



1, 0, 1, 2, 2, 4, 12, 22, 58, 158, 448, 1342, 4199, 13384, 43708, 144810, 485704, 1645576, 5623571, 19358410, 67078828, 233800162, 819267086, 2884908430
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

6,4


COMMENTS

The subsequence of primes begins a(9) = a(10) = 2, a(24) = 5623571, no more through a(29).  Jonathan Vos Post, Feb 05 2011


REFERENCES

M. B. Dillencourt, Polyhedra of small orders and their Hamiltonian properties. Tech. Rep. 9291, Info. and Comp. Sci. Dept., Univ. Calif. Irvine, 1992.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
T. R. S. Walsh, personal communication.


LINKS

Table of n, a(n) for n=6..29.
C. J. Bouwkamp & N. J. A. Sloane, Correspondence, 1971
A. J. W. Duijvestijn and P. J. Federico, The number of polyhedral (3connected planar) graphs, Math. Comp. 37 (1981), no. 156, 523532.
P. J. Federico, Enumeration of polyhedra: the number of 9hedra, J. Combin. Theory, 7 (1969), 155161.
G. P. Michon, Counting Polyhedra
Eric Weisstein's World of Mathematics, Polyhedral Graph
T. R. S. Walsh, Number of sensed planar maps with n edges and m vertices


CROSSREFS

Cf. A002841, A000944.
Sequence in context: A112362 A134720 A019225 * A298477 A253677 A182894
Adjacent sequences: A002837 A002838 A002839 * A002841 A002842 A002843


KEYWORD

nonn,nice


AUTHOR

N. J. A. Sloane


STATUS

approved



