

A002840


Number of polyhedral graphs with n edges.
(Formerly M0339 N0129)


14



1, 0, 1, 2, 2, 4, 12, 22, 58, 158, 448, 1342, 4199, 13384, 43708, 144810, 485704, 1645576, 5623571, 19358410, 67078828, 233800162, 819267086, 2884908430, 10204782956, 36249143676, 129267865144, 462669746182, 1661652306539, 5986979643542
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

6,4


REFERENCES

M. B. Dillencourt, Polyhedra of small orders and their Hamiltonian properties. Tech. Rep. 9291, Info. and Comp. Sci. Dept., Univ. Calif. Irvine, 1992.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
T. R. S. Walsh, personal communication.


LINKS

Table of n, a(n) for n=6..35.
C. J. Bouwkamp & N. J. A. Sloane, Correspondence, 1971
A. J. W. Duijvestijn and P. J. Federico, The number of polyhedral (3connected planar) graphs, Math. Comp. 37 (1981), no. 156, 523532.
P. J. Federico, Enumeration of polyhedra: the number of 9hedra, J. Combin. Theory, 7 (1969), 155161.
G. P. Michon, Counting Polyhedra  Numericana
Hugo Pfoertner, Unlabeled 3connected planar graphs for n<=20 edges, list in PARIreadable format.
Eric Weisstein's World of Mathematics, Polyhedral Graph
T. R. S. Walsh, Number of sensed planar maps with n edges and m vertices


PROG

(PARI) \\ It is assumed that the 3cp.gp file (from the linked zip archive) has been read before, i.e., \r [path]3cp.gp
for(k=6, #ThreeConnectedData, print1(#ThreeConnectedData[k], ", "));
\\ printing of the edge lists of the graphs for n <= 11
print(ThreeConnectedData[6..11]) \\ Hugo Pfoertner, Feb 14 2021


CROSSREFS

Cf. A002841, A000944, A338511.
Sequence in context: A112362 A134720 A019225 * A298477 A253677 A182894
Adjacent sequences: A002837 A002838 A002839 * A002841 A002842 A002843


KEYWORD

nonn,nice,changed


AUTHOR

N. J. A. Sloane


EXTENSIONS

a(30)a(35) from the Numericana link added by Andrey Zabolotskiy, Jun 13 2020


STATUS

approved



