login
Let F(x) = 1 + x + 4x^2 + 10x^3 + ... = g.f. for A000293 (solid partitions) and expand (1-x)(1-x^2)(1-x^3)...*F(x) in powers of x.
(Formerly M1408 N0550)
4

%I M1408 N0550 #36 Oct 12 2017 12:38:19

%S 1,0,2,5,12,24,56,113,248,503,1043,2080,4169,8145,15897,30545,58402,

%T 110461,207802,387561,718875,1324038,2425473,4416193,7999516,14411507,

%U 25837198,46092306,81851250,144691532,254682865,446399687,779302305

%N Let F(x) = 1 + x + 4x^2 + 10x^3 + ... = g.f. for A000293 (solid partitions) and expand (1-x)(1-x^2)(1-x^3)...*F(x) in powers of x.

%C Convolved with A000041 = A000293, solid partitions; and left border of the convolution triangle A161564. - _Gary W. Adamson_, Jun 13 2009

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Suresh Govindarajan, <a href="/A002836/b002836.txt">Table of n, a(n) for n = 0..72</a>

%H D. E. Knuth, <a href="http://dx.doi.org/10.1090/S0025-5718-1970-0277401-7">A Note on Solid Partitions</a>, Math. Comp. 24, 955-961, 1970.

%H Physics enthusiasts at IIT Madras, <a href="http://boltzmann.wikidot.com/solid-partitions">The Solid Partitions Project</a>

%Y Cf. A000293, A005980, A000293, A000041, A161564.

%K nonn

%O 0,3

%A _N. J. A. Sloane_

%E More terms from Pab Ter (pabrlos(AT)yahoo.com), May 08 2004

%E More terms from Srivatsan Balakrishnan and _Suresh Govindarajan_, Jan 03 2013