reportal love

TOYUN TINGL TO

and I have not the area.

Frank III

It a control of the afternal

olial al local

than many the second in

Tech adout won : V/

A sept theorem. I

1 - 1 - 1 - 1

X Madel and

Lot one Late

LLYNSRAL GUTTI

Indian Journal of Mathematics Vol. 11, No. 3, September, 1969

each of the a's can be afree amplied to a recommend a si mois automi, a mili

they physical with

alt at the secure

ON A PROBLEM IN PARITY da to you at if

By Hansraj Gupta

(Received January 27, 1969)

1. I have recently proved that

$$v_m(n) = (n+m-1)! (n, m)/n! m!,$$

is odd exactly

$$Q(w) = (3^{w+1} - 2^{w+2} + 2w + 1)/4$$

times, as m runs through positive integers $\leq n$, while n takes all positive integral values $\leq 2^{w}-1$, $w \geq 1$.

Here, we give an alternative proof of this result, we also consider the case when (n, m)=1.

Throughout this note

- $1 \leq m \leq n$: where
- (ii) A value of the number-pair {n; m} is said to be acceptable if it makes $v_m(n)$ odd;
- (iii) All congruences are modulo 2;
- (iv) If $h(\ge 0)$ be the highest power of 2 which divides u, then we write pot u=h;
- (v) u^* stands for [u/2].

Moreover, we write

$$u = (a_i \ a_{i-1} \dots a_2 a_1 a_0)$$

in the binary scale. All numbers $<2^{j+1}$ can be expressed in this manner. If $2^{j} \le u < 2^{j+1}$, $a_{j} = 1$; if $2^{j} > u$, $a_{j} = 0$.

While dealing with numbers less than 2^{j+1} , we sometimes express them uniformly with (j+1) figures each, in the binary scale. Thus, each of the a's can be zero or 1. To distinguish between the two cases, the representation is said to be proper when a_j , that is the figure to the extreme left in the representation, is 1.

It is easy to show that for $u < 2^{j+1}$,

pot
$$(u1)=u-\sum_{t=0}^{j} a_t=u-\Sigma a$$
.

2. Our proof of the result stated in section 1, is based on the

THEOREM. If n and m are both even, and pot n=pot m, then

$$v_m(n) \equiv \binom{n^* + m^* - 1}{m^* - 1}.$$

In all other cases,

$$v_m(n) \equiv \binom{n^* + m^*}{m^*}.$$

Proof. (i) When at least one of n and m is odd, we delete odd factors from the numerator and the denominator of v_m (n) and divide each of the even factors by 2, and the result follows.

(ii) When n and m are both even, but we define the description of

pot
$$n \neq \text{pot } m$$
,

we observe that big !

$$pot(n,m) = pot(n+m),$$

so that

$$v_m(n) \equiv (n+m)!/n! m!,$$

$$\equiv \binom{n^* + m^*}{m^*}.$$

(iii) Finally, when n and m are both even and pot n=pot m, we have

$$v_m(n) \equiv (n+m-1)!/n!(m-1)!,$$

$$\equiv (n+m-2)!/n!(m-2)!,$$

We notice that

is even.

3. Let 2^j:

and

Evidently, then

is odd, if and o

(3.1)
This holds, if an

(3.2)

Since $a_j = 0$

Moreover, has three solutio the one case who tions for every

Thus, if m sets of values, le pair $\{n; m\}$. Wh correspond 2^j ac the fact that for and the other ew $u^* \ge 1$, $u = 2 u^*$ 1JM 22

sometimes express nary scale. Thus, reen the two cases, s the figure to the

pased on the

ot m, then

in and water d

e delete odd factors divide each of the

11/2/2

pot n = pot m,

arres TA (

fite William

$$\equiv \binom{n^*+m^*-1}{m^*-1}.$$

We notice that when n and m are both even and pot n= pot m, then

$$\binom{n^*+m^*}{m^*}$$

is even.

3. Let $2^{j} \le n < 2^{j+1}$, $j \ge 1$. Then, in the binary scale, we can write $n^* = (a_i \dots a_2 a_1 a_0)$,

$$m^*=(b_j \dots b_2 b_1 b_0),$$

er community and the

and

$$n^++m^+=(c_j\ldots c_2c_1c_0).$$

Evidently, then

$$\binom{n^*+m^*}{m^*}$$

is odd, if and only if,

This holds, if and only if,

(3.2)
$$a_t + b_t = 0 \text{ or } 1, t = 0, 1, 2, ...j.$$

Since $a_j=0=b_j$, we must have $c_j=0$ also.

Moreover, since $a_{j-1}=1$, (3.2) can hold only if $b_{j-1}=0$. Now (3.2) has three solutions for each value of t from 0 to (j-2). This includes the one case when every b_t is zero. In this case, (3.2) has only two solutions for every t, $0 \le t \le j-2$.

Thus, if $m^* \ge 1$, the number-pair $\{n^*; m^*\}$ can have $(3^{j-1}-2^{j-1})$ sets of values, leading to $4(3^{j-1}-2^{j-1})$ acceptable values for the number-pair $\{n; m\}$. While if $m^*=0$, $\{n^*; m^*\}$ can have only 2^{j-1} values, to which correspond 2^j acceptable values of $\{n; m\}$. These conclusions follow from the fact that for each value of $u^* \ge 1$, u has two values one of which is odd and the other even; while for $u^*=0$, u has only one value. Actually, when $u^* \ge 1$, u = 2 u^* or $2u^* + 1$; while for $u^* = 0$, u = 1.

IJM 22

HANSRAJ GUPTA

4. Now, consider the case when both n and m are even and pot n= pot m.

Again, let $2^{j} \le n < 2^{j+1}$, $j \ge 1$. Write

$$n^* = (a_j \dots a_2 a_1 a_0),$$

$$m^* = (b_j \dots b_2 b_1 b_0),$$

$$m^* - 1 = (d_j \dots d_2 d_1 d_0),$$

$$n^* + m^* - 1 = (e_j \dots e_2 e_1 e_0).$$

Then, $\binom{n^*+m^*-1}{m^*-1}$ is odd, if and only if,

(4.1)
$$a_i + d_i = 0 \text{ or } 1, t = 0, 1, 2, ... j.$$

Since

$$a_{j-1}=1$$
, and $a_{j}=0=d_{j}$;

in view of (4.1), we must have

$$d_{i-1}=0$$
, and $e_i=0$.

Now, let q be the least integer ≥ 0 , for which $a_q = 1$.

Then, since pot n=pot m, we must have

$$b_1 = 0$$
 for $t = 0, 1, 2, ..., q - 1$; and $b_2 = 1$.

Hence,

$$d_i = 1$$
, for $t = 0, 1, 2, ..., q - 1$; and $d_q = 0$.

For q < j-2, (4.1) has three solutions for each t from 0 to (j-3) while if q=(j-2) or (j-1), (4.1) has just one solution in each of the two cases.

Since, n and m are both even, the number of acceptable numberpairs $\{n : m\}$ in this case is

(4.2)
$$2 + \sum_{q=0}^{j-3} 3^{j-2-q} = (3^{j-1} + 1)/2.$$

5. Making use of the results proved in the preceding two sections and noting that $v_1(1)$ is odd, we find that for

$$1 \leq m \leq n \leq 2^w - 1$$
,

the expression for $v_m(n)$ is odd exactly

$$1 + \sum_{j=1}^{w-1} \{ (4.3^{j-1} - 2^j) + ((3^{j-1} + 1)/2) \}$$

$$= (3^{w+1} - 2^{w+2} + 2w + 1)/4$$

of come a family blambet as this or

times as stated.

6. One can ask: "How often is $v_m(n)$ odd as m runs through values not exceeding n and prime to it, while n takes all positive integral values upto 2^w-1 ?".

The question appears to be difficult to answer, but a probabilistic argument leads to an approximate formula which is well supported by the available numerical evidence.

The calculations were carried out in the following manner with $n \ge 2$.

Take n=68, 69; so that we have $n^*=(100010)$.

The values of m for which $\binom{n^*+m^*}{m^*}$ is odd, are readily seen to be

(Evidently, the total number of values of m for a given n, is given by $2^{h+1}-1$, where h is the number of zeros in the proper binary representation of n^* .)

Of the above noted values of m, exactly 14 are prime to 68, and 21 prime to 69.

(These numbers are closely approximated by

$$\phi(n) (2^{h+1}-1)/n$$

ease enter 2

as could be expected. Thus

 $\phi(68).31/68 = 14.6$ and $\phi(69).31/69 = 19.8$.)

The total number of times that

$$\binom{n^*+m^*}{m^*}$$

is odd for $1 \le m \le n \le 2^w - 1$, is given by

$$M(w) = 2(3^{w-1}-2^{w-1})+1.$$

Since, for large n,

$$\frac{\sum\limits_{k=1}^{n}\phi(k)}{\sum\limits_{k=1}^{n}k}\sim\frac{6}{\pi^{2}},$$

we can expect $v_m(n)$ to be odd, when $1 \le m \le n \le 2^w - 1$, and (n, m) = 1, about $6M(w)/\pi^2$ times. Actually

(6.1)
$$\mathcal{N}(w) = [6M(w)/\pi^2] + 2^{w-1},$$

provides a very good approximation to the actual results for $w \le 7$, as will be seen from the following table:

w	Actual count	$\mathcal{N}(w)$	M(w)	1278
I	1	1	/ 1	
2	3	3	3	
3	10	10	11	
4	29	31	39	
5	97	95	131	
6	284	289	423	
7	871	873	1331	
			1	

The counts having been made in two independent ways, can be fully relied upon.

The problem: "How often is $v_m(n)$ prime to an odd prime p, as m and n run through values for which $1 \le m \le n \le p^w - 1$?", can be considered on the same lines.

Appendix

Table 1

giving for a given n, the number of m's such that (m, n) = 1, $1 \le m \le n$ and $v_m(n)$ is odd.

n	0	1	2	3	4	5	6	7	. 8	9	
	Read						acciois yours				
		1	1	1	2	3	1	1	4	5	
1	<u>_1</u>	3	1	3	1	1	8	15	3	7=	
1 2 3 4	4	3 5	2	3	3	6	2 5	15 3	2	3 5 13	
3	1	1	16	19	7	10	5	15 3	2 4 5	5	
4	7	15	3	19 7	4	10 5	2	3	5	13	
5	3	5	4	7	1	3	3	5	2	3	
6	1	3	1	1	32	47	11	31	14	21	
7	6	15	11	31	7	9	7	12	3	7	
8	12	21	7	15	4	11	4	5	7	15	
8	2	21 7	4	15 5	2	3	11	31	7	11	
10	7	15	2	7	8	8	4	7	3	7	
10 11	2	3	7	15	3	6	4	5 -	2	3	
12	2	7	2	3	2	3	ì	1	4	3	
			_								

Table 2

giving for a given m, the number of n's for which (n, m) = 1, $1 \le m \le n$ ≤ 127 and $v_m(n)$ is odd.

111 ()						_				
m	0	I	2	3	4	5	6	7	8	9
1 2 3 4	12 8 1 6	127 27 14 6 15	31 10 5 16 2	42 27 12 20 8	30 6 8 7 4	48 8 20 11 4	10 24 5 6 2	26 45 8 15 4	28 8 5 4 6	38 23 12 5 14
5 6	3 1 0	5 4 ·	3 1	8 2	2 0	3 0	4 0 0	6 0	2 0	4 0 ·

PANJAB UNIVERSITY, CHANDIGARH

AND

ALLAHABAD UNIVERSITY, ALLAHABAD