login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002760 Squares and cubes. 10
0, 1, 4, 8, 9, 16, 25, 27, 36, 49, 64, 81, 100, 121, 125, 144, 169, 196, 216, 225, 256, 289, 324, 343, 361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1600, 1681, 1728, 1764, 1849 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Catalan's Conjecture states that 8 and 9 are the only pair of consecutive numbers in this sequence. The conjecture was established in 2003 by Mihilescu.

Subsequence of A022549. - Reinhard Zumkeller, Jul 17 2010

REFERENCES

Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 68.

Clifford A. Pickover, The Math Book, Sterling, NY, 2009; see p. 236.

LINKS

Zak Seidov and Michael De Vlieger, Table of n, a(n) for n = 1..10443 (First 1000 terms from Zak Seidov)

Yuri F. Bilu, Catalan's Conjecture (After Mihilescu), Astérisque, No. 294, 1-26, 2004.

Yuri F. Bilu, Catalan Without Logarithmic Forms (after Bugeaud, Hanrot and Mihailescu), J. Théor. Nombres Bordeaux 17, 69-85, 2005.

David Masser, Alan Baker, arXiv:2010.10256 [math.HO], 2020. See p. 4.

Tauno Metsänkylä, Catalan's conjecture: another old Diophantine problem solved, Bull. Amer. Math. Soc. (NS), Vol. 41, No. 1 (2004), pp. 43-57.

Preda Mihǎilescu, A Class Number Free Criterion for Catalan's Conjecture, J. Number Th. 99 225-231, 2003.

Preda Mihǎilescu, Primary Cyclotomic Units and a Proof of Catalan's Conjecture, J. Reine angew. Math. 572 (2004): 167-195. MR 2076124.

Paulo Ribenboim, Catalan's Conjecture, Séminaire de Philosophie et Mathématiques, 6 (1994), p. 1-11.

Paulo Ribenboim, Catalan's Conjecture, Amer. Math. Monthly, Vol. 103(7) Aug-Sept 1996, pp. 529-538.

FORMULA

Sum_{n>=2} 1/a(n) = zeta(2) + zeta(3) - zeta(6). - Amiram Eldar, Dec 19 2020

MATHEMATICA

nMax=2000; Union[Range[0, nMax^(1/2)]^2, Range[0, nMax^(1/3)]^3] (* Vladimir Joseph Stephan Orlovsky, Apr 11 2011 *)

nxt[n_] := Min[ Floor[1 + Sqrt[n]]^2, Floor[1 + n^(1/3)]^3]; NestList[ nxt, 0, 55] (* Robert G. Wilson v, Aug 16 2014 *)

PROG

(MAGMA) [n: n in [0..1600] | IsIntegral(n^(1/3)) or IsIntegral(n^(1/2))]; // Bruno Berselli, Feb 09 2016

(PARI) isok(n) = issquare(n) || ispower(n, 3); \\ Michel Marcus, Mar 29 2016

CROSSREFS

Cf. A131799; union of A000290 and A000578.

First differences in A075052. [From Zak Seidov, May 10 2010]

Cf. A002117, A013661, A013664.

Sequence in context: A246547 A195942 A125643 * A115651 A062559 A010417

Adjacent sequences:  A002757 A002758 A002759 * A002761 A002762 A002763

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 7 17:09 EST 2021. Contains 341897 sequences. (Running on oeis4.)