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—ON LOGARITHMIC NUMBERS
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1. Some Preliminaries.
are defined by the relation

e log(l —x") = — i G (D xr!, (1.1)
r=1

|x| < 1.

Whence expanding and equating the co-efficients of x" we get

Y= ) .

(r/
G ()rt = El (- (1.2)

j=
This shows that G (¢) is a polynomial in ¢ of degree r — n.

Again writing (1.1) in the form

log (1 —=x") = (1.3)

—e S G ()Xr, x| <L
r=1

and expanding as before we obtain

pa) (r_)Gf")(I)li=(r—l)!n or0 (1.4)
i\ i

according as n|r or ntr.

Differentiating (1.1)with respect to ¢ and equating the coeflicients of
x" we get

—C_{GY,) (l) = —Tr Gl('”—)l (1).

dt

(1.5)
50 that
J6™ (1) dt = = G, (1)/(r + 1) + const (1.6)

i.e., the differentiation and integration of G")(l) respectively reduce
and raise its sullix by one, along with the introduction of minus sign,

Again differentiating (1.1) with respect to x and writing

AN () =[G (1) + G\ ())/n for r=0. (1.7)
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74 3. M. GANDIN

where we take G4 (1) =0, and after some simplifications we get

N A (DX =X e (= x), |x| < 1. (1.8)
r-0

This leads to the result

(r'\n

=2y et (19)

Now from (1.1) it will be seen that
G (1) =0 forn>r=0, (1.10)

and hence from (1.7) we get

A" (1) - 0. for ne=r+121. (1.11)

2 Relations with known functions. Multiplying (1.8) by
4( =1)"x and summing from m =0 to oo we get
L3 (r/2) @
4 > (__ l)m A£2m+l) (l) xr-H/r! ne—xl > 4 ( _ ])m x2m+l/(l _x2m+1)
. me0

r=0 m-0

™

e Y r(n)x" (2.1)

no |

where r(n) is the number of representations of n as a sum of squares
of two rational integers ([7], theorem 311).
1t is evident from (2.1) that :

(r/2) r Y,
43 (=1)" AP (1) = 2 ri(=n ’,‘(’ j+1) (2.2)

m=0 j=0

starting from (1.8) and making use of the following results

S0-x) (1=x) l,

3 ¢()x X [7], Theorem (309) (2.3)

- p(ﬂ)xn -

2= [7], Theorem (308) (2.4)

) x . X
> dn)x" w———+ ——5 +- 4 oot [7], Theorem 310) (2.5
1—-x 3

1—x* 1—x

n=1

e e,

e —
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function, Mobius function,
the divisors of n, we can p

r

ril
S g () AP ()= 2 1

n=1] =t

z pln) 4 () (-7

> A7 (1) - BEE

= nA'/,""(l) = L —
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ns we get '3 a(n)x" = X L ' [7]. Theorem ( ) (6
~ =1 (l _ xﬂ)

(1.8)

where ¢(n). ,u.(n), d(n) and @ (n) denote respectively Euler’s
' f nand the sum of

function, Mobius function, number of divisors 0
the divisors of n, W€ can prove that

r+t r .
(1.9) El ¢ (n) AP (1) = Eor 1(=t) (r+1 —j)/j! for every r= 0. (2.7)

(2.8)

r+1 .
Y w(n) A7 () = (—1) for every r= 0.
n=1

(1.10)
r+1 r 1 _ J —
s A (1) -=C ( ')—.‘.i-(r——jil)- for every r 2 0. (2.9)
(1.11) n=1 j=0 jt
and
uplying (1.8) ©Y ' .
¢ r ( rg(r—j+ 1)
' > n A () = Zo - (—1)’ for every r 0. (2.10)
J= j!

L n=1
\ .)N x-_a_,,,.s.\/(i = x2m- 1)
and proceeding as before, the following

Multiplying (1.8) by €,

R (2_1) results can be esaily proved.
I| ‘ r»b;l " r\ o ( ;
w a(r+1)=——Z P nAj (o) 1. (2.11)
g5 asum of squares \ 1m0\ Jj
E PRUCINA amth) }
'| r(r+ 1)=7 3 %o j (=1)"4 ()¢ (2.12)
Fi’;,(_’_:it_‘) 22) |
it 2
! \ d(r+1)-—‘—‘ DI (’)A}"’ (1) ¢ (2.13)
\ n= =0
“awing TEsults r v J
It is interesting to DOl that results (2.11) (2.12) and (2.13) are
their right hand sides are functions of ¢,
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pendent of t.

1 Theorem (309)
‘ while their left hand sides are inde
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+ Theorem (308 (24)
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From definition we have

)

e log(l —x")= = X G (1) x/r! (3.1)
re=1

elog(l —x")= - 2 G (= 1) x[r! (3.2)
. ret

replacing x by —x in (3.1) and taking n=2m and 2m +1, we
readily get ‘ :

( _ ])r G£2IH) (]) - G,‘-ZH') ( _ ]),
and (= 1) GE™ D (1) + G2V (= 1) = G (= 1), (3.4)

In case of Aﬁ"’(x), the following results appear to be of interest.

S u() A0 ()= (1), 20 (3.5)

L ) A7 (=) =1,r =0 | (3,6)
In an earlier paper [5], the author has shown that k

AP (=) = AD (= 1) D (3.7)

AP (1) = rP AP (1) + (= 1) 7+ pomn) (3.8)
where ' ar(r=1)(r=2) - (r—n+1). '

and we take 7@ =1. Also it can be easily proved that
AP (= 1) =42 (1) ]. (3.9)

These results are of use in calculating recurssively the values of A’s.
We keep n fixed and go on giving values to r, starting with r=n-—1
and taking A(_",) =0 for j= 1. The values of G’s are then obtained
with the help of (1:7). We give short tables of these functions for
reference. We also list the values of .

r+1 r+i r+1
A1), 2 aa1), 4" (-1),
n=1 ton=1

n=1

YRS ) r ¢
S na?(=1), 2 6"0W)/n, X 6P (=1)/n
ne1 n=1 . n=1

= G (—1) and

n ot

some interesting _rq

X G (1)
n-l

) Gf") (1)!"“
1

4. Log:rthn
From (3.1) and (2.2
Cosl
Sinh
where S,
and
From (4.1) anc -2
N
Table N
S
. 1 2
n\ |
1 1 -1 =
2 2 -6
3 & -
4
5
6
7
8
9
10
r

r

X
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“ (”)( 1) and E 6" (1) as these functions are found to have

n 1

some intcresting properties which we propose to discuss elsewhere.

4. Logarithmic numbers and some arithmetical co-efficients.
From (3.1) and (3.2) it is evident that

Cosh xlog(l —x") = — = S x'[r! (4.1)
r=1
Sinhxlog(1—x") = — = K" x[rt, (4.2)
r=1
where s =[G (1) + G (= 1)]/2. (4.3)
and B =[G (= 1) =6 (]2 (4.4)

From (4.1) and (4.2) we get

B X[t (4.5)

r=1

Cosh x = X S™ x’/r!/

PEYA

Table No. 1 for G("’ (1) and allied functions

[ o S

A\ 1 2 3 4 5.. 6 7 8 9 10
.

1 1 El L z2v U 9 35 230 1624 13209 120287

2 5 -6 24 -80 450 -2142 17696 -112464 1232370

3 6 -24 60 240 -2310 9744 91224 —1134720

4 24 -120 360 -840 21840 -184464 912240

5 120 -720 - 2520 -6720 15120 1784160

6 720 -5040 20160 -60480 151200

7 5040 -40320 181440 -604800

8 ) 40320 -362880 1814400

9 362880 -3628800

10 3628800
r \ 123 4 5 6 7 8 9 10

> G (1) \ 111 2 24 -11 1085 -2542 64344 -56415 4275137 <=
n-1

> G(,") (1)/”

n=1

4

2142 v()//

! o[m S17 106 ~437 20480 -44707 1068404 <— 7Y v
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Table No. 2 for G (- 1) and allicd functions

- 2 3 4 5 6 7 8§ 9 10

/ nlod e -

210% -1 3 o 024 89 415 2372 16072 125673 1112083
(21 t&')} agail— 32 6 24 80 450 2142 17696 112464 1232370
3 6 24 G0 480 2730 10416 1 51704 1285920
| 4 24 120 360 840 21840 184464 912240
' 5 120 720 2520 6720 15120 1844640
, ¢ 420 5040 20160 60480 151200
| 7 5040 40320 181440 (048C0
. 40320 362880 1814400
3 < 362880 3628800
V4 10 3628800
(,UL[’S r 1234 5 6 7 8 9 10

” I =
v e (=1) {7\ 5 20 96 469 3135 20684 173544 1557105 16215253

—_—

49352 403273 3862376

y G (- 1)/11} 1 4 13 50 203 1154 6627
iy ! - e —

——

v

Table No. 3 for A™ (1) and allied functions

e —— -
—

B

_ \// ”\\ o0 1 2 3 4 5 6 7 8 9

L[éé) S—+—1 2 9 44 265 1854 14833 133496

. ﬂ\/ 2 d 5 9 -28 185 -846 7777 -47384 559953

v o 14 5 3 5 6 12 100 -690 2478 33656 -347832

| 4 6 -24 60 -120 5250 -40656 181944

{ 5 24 -120 360 -840 1680 359856

‘ 6 120 -720 2520 -6720 15120

7 770 —5040 20160 ~60430

! 8 5040 -40320 181440

% 9 40320 -362880

; 10 362880

[ ————
‘ r | 012 3 4 5 6 7 8 9
rl

‘ J b nA(,")M’l 5 3 26 13 1074 -1457 61802 7929 4218722

n--\ .

11 1 11 -7 389 -1031 19039 -24457 1023497

PR
e
3
(RS
~

Pl *

|

|

|

(2

Table No. 4 for

' 0 1 2 3

n

1 1 2 5 16

2 1 29

3 2 5

4 6

5

6

7

8

9

10
e

r o1 2

S opsm(=1) 14157

n=1 .

r~1 ’

SoAM(=1) 13

n=1 .

L.

Also (4.1; can be

‘IO,::_ =

Starting from (4.5, and

X col X
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Table No. 4 for A" (=1) and allied functions.

-
A’: 0o 1 2 3 4 5 6 7 8 9
| T
1 1 2 5 16 65 326 1957 13700 109601 98641064(5'2,2)/
2 1 2 9 28 185 846 7777 47384 559953 —— 3 5 <
3 2 6 12 140 750 2562 47096 378072 “l Ao
4 6 24 60 120 5250 40656 181944
5 24 120 360 840 1680 365904
6 120 720 2520 6720 15120
7 720 5040 20160 60480
g 5040 40320 181440
9 40320 362880
10 362880
, [or 23 4 5 6 7 8 9

Y nA$">(_1)E4 15 76 373 2676 17539 152860 1383561 14658148 Q’— 27 SO :{/
n=|

r+1 N ) ™9 /
S AN (=1) ‘13 9 37 153 951 5473 42729 353937 3455083 —— <L /(S| - i
nel

Also (4.1) can be written as

log (1 - x") = —Sech x = S™ x'/r! - (46)
. r=1

Starting from (4.5) and (4.6) and using the following results

x coth x = By + M « By (2x)* (2r)/ ! (4.7
(2 x)3
tanh x = g,° 2—' + 84 - a1 + (4'8)
sz E4 .x .
Sechx = Ej + - 2-‘ + - 4 — 4 ’ (4-9)
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0 P A

«and L5 respectively denote the numbers of Bernoulli,

where <
Genooet and Faoler, we get
PSS TR, By =0, (4.10)
PR e NV 2+ 5P, gauy =0, go=0. (4.11)
- o0 0 L LE ~S7)" according as n/r or n1r, E, =0 (412)
It is to > ~otad that the symbol == means that after expan(s)ion the
px\;--— is (o ¢ replaced by a subscript and that 4, and So =0,
S. Cosgreence properties.  In formulae (1.2) and (14)
puttirg ¢ = 1 atd —1 respectively we get \
(r/n) .
G (M)/rt= X (=1 7"/(r=jn)1j (5.1)
j=1
G/ (=1)/r! = 1/(r ~jn) 1 j (5.2)

p Y ; r
L_—‘. \\' L, G-;Il(l)+..'+<r_

\ r
or Qeposd-zasrnrornx r..

£\

ST .
LR W1/

= =101 or0according as n|rerntr,
-3 13.2) it is evident that
G (=6 (-

G L) =6 (- 1) = (n+ 1)!

From (31 4
1) =n!

and G (1) and G2y =0 for n=r+1.

G, (1) = 0 (modn?)

G (~1) =0 (modn!)

1)ag~)(1)=n (r=1)1 (5.3)

G2 (=) (= 1) (,j 1>G§"’(—1) '

(5.4)

(5.5)

(5.6)
(5.7)

(5.8)
(5.9)

(

p—

e ———

@,

whence
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. r
PROOF.  Since \/

r . .
) == ,—— is an integer
\1n, (r—tn)l ’

-is divisible by n! and the congruences (5. 8) and (s. 9)
t

follow from (5.1) and (5.2).

From (5.8), (5.9) and (1.7) it is evident that
A (1) =0 [mod (n = 1)1] and A7 (= 1) =0[mod (n - 1]

(5.10)
Moreover for n> 1
G" (1) =0 [mod ],
and " (- 1)=0 [mod ],
while when n=1 and if r = p be prime then
G;” (1) =1(mod p) and GV (=1)=—1 (mod p).

(5.11)
(5.12)

(5.13)

PROOF.  We can rewrjte (5.2) as - Gl

GS")(—1)=r(’; D (r—n+ 1)/1 +r(r_])---(r—2n+l)/2

+r(r—l)---(r-1n+l)/t+-'~
w1l (r=n)- (r-2n+1)
_r()[T 2t
(r—n)(r—n—l)

(’"’"‘1)] (5.14)

t

When n> 1. from (5.14) we find that each term in the brackcts on
its right side is .an integer, since the product of ¢ consecutive
integers is divisible by r!, and hence the congruence (5.12) follows
while when n=1, from (5.14) it is evident that in general
GP(=1) %0 (mod r) However it n=1,r—p be a prime then the
second part of (5.13) immediately follows [Use is made of Wilson’s
theorem that (p - 1)1 = — 1 (mod p)]. Similarly congruence (5. 11)
and the first part of (5.13) can be proved.

In view of (5.11), (5.12) and (1.7) it is evident that
A7 (1) =0 [mod ] and A" (=1) =0 [mod r*,

forn>1, r>0. (5.15)



Gy o cmentary methods we can also prove that i
G,", (1) ¢1) (mod p) (5.16) (N ACKNOWLEDGEMENT '

and G‘,:",\,, (-1) =6 (- 1) (mod p) . (5.17) 1 The author feels highly obliged to Prof. H,. Gupta for his kind
- ' guidance and encouragement,
provided that n>1, p is a prime >rand (r+ 1) > (¢ +1)n, where

# [ r:].
While for n =1, we have : _ RELFERENCES
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Similarly other results can be proved : 6. GaNnDHILJ. M. AND K. L. DUGAL: Some arithmetical coeflicients.

Last digital properties of Logarithmic Numbers; The last digits of An unpublished paper.
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elementary methods, but the results arnd the proofs are too lengthy i
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In the end it may be mentioned that the related polynomials M™ (r)
defined by

—xt "} = S e "It I 1. 5.21
e "log (1 +x") E“ M, (’) % /r ’ 'xl < ( ) ' Dept. of Physics
Univerity of Rajasthan

are o al inter : ISCus else w . . ,
»f equal interest and may be discussed else where Jaipur (Rajasthan)



