login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002714 Number of different keys with n cuts, depths between 1 and 7 and depth difference at most 1 between adjacent cut depths.
(Formerly M4366 N1832)
4
1, 7, 19, 53, 149, 421, 1193, 3387, 9627, 27383, 77923, 221805, 631469, 1797957, 5119593, 14578387, 41514003, 118218823, 336653331, 958698053, 2730124261, 7774706437, 22140438345, 63050541515, 179552587883, 511322221559 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Also number of base 7 n-digit numbers with adjacent digits differing by one or less.

[Empirical] a(base,n)=a(base-1,n)+3^(n-1) for base>=n; a(base,n)=a(base-1,n)+3^(n-1)-2 when base=n-1. - R. H. Hardin, Dec 26 2006

REFERENCES

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

C. A. Coulson, How Many different Keys?, Math. Gaz. vol 53 no 383 (1969), 7-13.

C. A. Coulson, How many different keys?, Math. Gaz. vol 53 no 383 (1969), 7-13. [Annotated scanned copy]

Arnold Knopfmacher, Toufik Mansour, Augustine Munagi, Helmut Prodinger, Smooth words and Chebyshev polynomials, arXiv:0809.0551v1 [math.CO], 2008.

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

FORMULA

G.f. (2*x^4 - 5*x^3 - 7*x^2 + 3*x + 1)/(-x^4 + 4*x^3 + 2*x^2 - 4*x + 1); (from the Knopfmacher et al. reference). - Joerg Arndt, Aug 10 2012

MAPLE

A002714:=-(7-9*z-9*z**2+3*z**3)/(-1+4*z-2*z**2-4*z**3+z**4); # conjectured by Simon Plouffe in his 1992 dissertation; correct up to offset

T := proc(d, n) option remember ; if n = 1 then 1; else if d = 7 then T(d, n-1)+T(d-1, n-1) ; elif d = 1 then T(d, n-1)+T(d+1, n-1) ; else T(d-1, n-1)+T(d, n-1)+T(d+1, n-1) ; fi ; fi ; end: A002714 := proc(n) local d ; add( T(d, n), d=1..7) ; end: seq(A002714(n), n=1..35) ; # R. J. Mathar, Jun 15 2008

MATHEMATICA

CoefficientList[Series[(2*x^4-5*x^3-7*x^2+3*x+1)/(-x^4+4*x^3+2*x^2-4*x+1), {x, 0, 200}], x] (* Vincenzo Librandi, Aug 13 2012 *)

PROG

(S/R) stvar $[N]:(0..M-1) init $[]:=0 asgn $[]->{*} kill +[i in 0..N-2](($[i]`-$[i+1]`>1)+($[i+1]`-$[i]`>1))

(PARI)

/* from the Knopfmacher et al. reference */

default(realprecision, 99); /* using floats */

sn(n, k)=1/n*sum(i=1, k, sumdiv(n, j, eulerphi(j)*(1+2*cos(i*Pi/(k+1)))^(n/j)));

vector(66, n, if (n==1, 1, round(sn(n-1, 7))) )

/* Joerg Arndt, Aug 13 2012 */

CROSSREFS

Sequence in context: A092053 A072630 * A126361 A069005 A000413 A263335

Adjacent sequences:  A002711 A002712 A002713 * A002715 A002716 A002717

KEYWORD

nonn

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from R. J. Mathar, Jun 15 2008

Information added from A126361, offset changed to 0 by Joerg Arndt, Aug 13 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 26 06:20 EDT 2017. Contains 287080 sequences.