login
a(n) = (n+1) * (2*n)! / n!.
(Formerly M3665 N1491)
4

%I M3665 N1491 #39 Aug 14 2022 16:57:34

%S 1,4,36,480,8400,181440,4656960,138378240,4670265600,176432256000,

%T 7374868300800,337903056691200,16838835658444800,906706535454720000,

%U 52459449551308800000,3245491278907637760000,213796737998040637440000

%N a(n) = (n+1) * (2*n)! / n!.

%C Coefficients of orthogonal polynomials.

%C E.g.f. for series with alternating signs: x/(1+4*x)^(1/2).

%C Central terms of triangle A245334. - _Reinhard Zumkeller_, Aug 30 2014

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vincenzo Librandi, <a href="/A002690/b002690.txt">Table of n, a(n) for n = 0..200</a>

%H H. E. Salzer, <a href="http://dx.doi.org/10.1090/S0025-5718-1955-0078498-1">Orthogonal polynomials arising in the evaluation of inverse Laplace transforms</a>, Math. Comp. 9 (1955), 164-177.

%H H. E. Salzer, <a href="/A000407/a000407.pdf">Orthogonal polynomials arising in the evaluation of inverse Laplace transforms</a>, Math. Comp. 9 (1955), 164-177. [Annotated scanned copy]

%F E.g.f.: (1-2*x)/(1-4*x)^(3/2).

%p with(combstruct):bin := {B=Union(Z,Prod(B,B))}: seq (count([B,bin,labeled],size=n)*n, n=1..17); # _Zerinvary Lajos_, Dec 05 2007

%t Table[((n+1)(2n)!)/n!,{n,0,20}] (* _Harvey P. Dale_, Sep 04 2011 *)

%o (PARI) a(n)=(n+1)*(2*n)!/n!

%o (Magma) [(n+1) * Factorial(2*n) /Factorial(n): n in [0..20]]; // _Vincenzo Librandi_, Sep 05 2011

%o (Haskell)

%o a002690 n = a245334 (2 * n) n -- _Reinhard Zumkeller_, Aug 30 2014

%Y a(n) = (n+1) * A001813(n) = 2^n * A001193(n+1).

%Y Cf. A002691, A000407.

%Y Cf. A245334.

%K nonn,easy,nice

%O 0,2

%A _N. J. A. Sloane_

%E Edited by _Ralf Stephan_, Mar 21 2004