

A002637


Number of partitions of n into not more than 5 pentagonal numbers.
(Formerly M0050 N0016)


1



1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 2, 2, 1, 1, 2, 1, 2, 2, 3, 3, 2, 3, 2, 2, 2, 1, 2, 1, 3, 3, 3, 4, 3, 3, 2, 3, 3, 1, 2, 3, 4, 4, 3, 4, 3, 4, 3, 3, 3, 3, 3, 4, 5, 5, 3, 3, 4, 4, 3, 2, 4, 3, 4, 4, 5, 6, 5, 5, 4, 5, 6, 3, 4, 4, 6, 5, 4, 5, 4, 6, 4, 5, 6, 4, 3, 3, 8, 7, 5, 6, 5, 7, 5, 6, 5, 3, 6, 5, 7, 7
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,5


REFERENCES

D. H. Lehmer, Review of Loria article, Math. Comp. 2 (1947), 301302.
G. Loria, Sulla scomposizione di un intero nella somma di numeri poligonali. (Italian) Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 1, (1946). 715.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


LINKS

Wouter Meeussen, Table of n, a(n) for n = 1..512
Eric Weisstein, MathWorld, Pentagonal Number


MATHEMATICA

it=Expand[Normal @ Series[CoefficientList[Series[Product[(1+(q l[3k^2/2k/2] x^(3k^2/2k/2)))^5, {k, 512}], {x, 0, 512}], x], {q, 0, 5}]]/. (_Integer) q^(e_:1)>1 /.q>1 ; it/.l[_]>1  Wouter Meeussen, May 17 2008


CROSSREFS

Sequence in context: A206491 A122172 A025910 * A166279 A077478 A127836
Adjacent sequences: A002634 A002635 A002636 * A002638 A002639 A002640


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane.


EXTENSIONS

More terms from Naohiro Nomoto, Feb 28 2002


STATUS

approved



