login
Number of partitions of at most n into at most 5 parts.
(Formerly M1053 N0395)
12

%I M1053 N0395 #64 Aug 19 2020 15:43:16

%S 1,2,4,7,12,19,29,42,60,83,113,150,197,254,324,408,509,628,769,933,

%T 1125,1346,1601,1892,2225,2602,3029,3509,4049,4652,5326,6074,6905,

%U 7823,8837,9952,11178,12520,13989,15591,17338,19236,21298,23531,25949,28560,31378,34412

%N Number of partitions of at most n into at most 5 parts.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Seiichi Manyama, <a href="/A002622/b002622.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Vincenzo Librandi)

%H P. J. Cameron, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL3/groups.html">Sequences realized by oligomorphic permutation groups</a>, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.

%H E. Fix and J. L. Hodges, Jr., <a href="http://projecteuclid.org/euclid.aoms/1177728547">Significance probabilities of the Wilcoxon test</a>, Annals Math. Stat., 26 (1955), 301-312.

%H E. Fix and J. L. Hodges, <a href="/A000601/a000601.pdf">Significance probabilities of the Wilcoxon test</a>, Annals Math. Stat., 26 (1955), 301-312. [Annotated scanned copy]

%H <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (2, 0, -1, 0, -1, 0, 0, 2, 0, 0, -1, 0, -1, 0, 2, -1).

%F G.f.: 1/[(1+x^2)*(1-x^3)*(1-x)^4*(1-x^5)*(1+x)^2]. (Corrected Mar 31 2018)

%F a(n)= 2*a(n-1) -a(n-3) -a(n-5) +2*a(n-8) -a(n-11) -a(n-13) +2*a(n-15) -a(n-16).

%F G.f.: 1 / ((1 - x)^2 * (1 - x^2) * (1 - x^3) * (1 - x^4) * (1 - x^5)). - _Michael Somos_, Apr 24 2014

%F Euler transform of length 5 sequence [ 2, 1, 1, 1, 1]. - _Michael Somos_, Apr 24 2014

%F a(n) = a(n-1) + A001401(n). - _Michael Somos_, Apr 24 2014

%F a(n) = round((n+1)*(6*n^4+234*n^3+3326*n^2+20674*n+50651+675*(-1)^n)/86400). - _Tani Akinari_, May 05 2014

%e G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 12*x^4 + 19*x^5 + 29*x^6 + 42*x^7 + 60*x^8 + ...

%e a(2) = 4 with partitions 0, 1, 2, 1+1. a(3) = 7 with partitions 0, 1, 2, 1+1, 3, 2+1, 1+1+1. - _Michael Somos_, Apr 24 2014

%t CoefficientList[Series[1/((1 - x)^2 (1 - x^2) (1 - x^3) (1 - x^4) (1 - x^5)), {x, 0, 100}], x] (* _Vincenzo Librandi_, Apr 25 2014 *)

%t LinearRecurrence[{2, 0, -1, 0, -1, 0, 0, 2, 0, 0, -1, 0, -1, 0, 2, -1}, {1, 2, 4, 7, 12, 19, 29, 42, 60, 83, 113, 150, 197, 254, 324, 408}, 48] (* _Georg Fischer_, Feb 27 2019 *)

%o (PARI) x='x+O('x^99); Vec(1/((1-x)*prod(i=1, 5, 1-x^i))) \\ _Altug Alkan_, Mar 30 2018

%Y Cf. A001401 (first differences). Column 5 of A092905.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_