%I M4051 N1681 #30 Mar 04 2019 06:07:39
%S 0,1,-6,-3,82,-84,-444,769,1110,-2643,-860,2901,-1176,6277,1170,
%T -21315,-2308,14244,29442,15540,-58194,-13338,-31886,4080,176682,
%U -70715,-51240,81489,-135728,13137,-205350,58826,355974,16380,530932,-457944,-938748,140329,99462,317157
%N Glaisher's function H'(4n+1) (18 squares version).
%C It would be nice to have a q-series that generates this sequence. Glaisher gives many formulas but they are difficult to follow.
%D J. W. L. Glaisher, On the representation of a number as sum of 18 squares, Quart. J. Math. 38 (1907), 289-351 (see p. 312). [The whole 1907 volume of The Quarterly Journal of Pure and Applied Mathematics, volume 38, is freely available from Google Books]
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Sean A. Irvine, <a href="https://github.com/archmageirvine/joeis/blob/master/src/irvine/oeis/a002/A002610.java">Java program</a> (github)
%H <a href="/index/Ge#Glaisher">Index entries for sequences mentioned by Glaisher</a>
%F See eqn. top of page 312 in Glaisher, where Theta(n) is A002288(n). - _Sean A. Irvine_, Mar 03 2019
%Y Cf. A002288.
%K sign
%O 0,3
%A _N. J. A. Sloane_
%E Edited and signs added by _N. J. A. Sloane_, Nov 26 2018
%E More terms from _Sean A. Irvine_, Mar 03 2019