login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002603 A generalized partition function.
(Formerly M4971 N2134)
1
1, 15, 73, 143, 208, 244, 265, 273, 282, 490, 838, 1426, 2367, 3908, 6356, 10246, 16327, 25812, 40379, 62748, 96660, 147833, 224446, 338584, 507293, 755612, 1118679, 1647023, 2411642, 3513096, 5091511, 7344086, 10543419, 15068833, 21442703, 30385111, 42880601 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

Gupta, Hansraj; A generalization of the partition function. Proc. Nat. Inst. Sci. India 17, (1951). 231-238.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..1000

H. Gupta, A generalization of the partition function, Proc. Nat. Inst. Sci. India 17, (1951). 231-238. [Annotated scanned copy]

MAPLE

J:= m-> product((1-x^j)^(-j), j=1..m): a:= t-> coeff(series(J(min(9, t)), x, 1+max(9, t)), x, max(9, t)): seq(a(n), n=1..40); # Alois P. Heinz, Jul 20 2009

MATHEMATICA

J[m_] := Product[(1-x^j)^-j, {j, 1, m}]; a[t_] := SeriesCoefficient[J[Min[9, t]], {x, 0, Max[9, t]}]; Table[ a[n], {n, 1, 40}] (* Jean-Fran├žois Alcover, Mar 17 2014, after Alois P. Heinz *)

CROSSREFS

Sequence in context: A212098 A053531 A000476 * A212562 A212092 A022817

Adjacent sequences:  A002600 A002601 A002602 * A002604 A002605 A002606

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Alois P. Heinz, Jul 20 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 22 03:43 EST 2019. Contains 329388 sequences. (Running on oeis4.)