login
A002602
A generalized partition function.
(Formerly M4965 N2130)
1
1, 15, 51, 97, 127, 145, 152, 160, 273, 481, 811, 1372, 2250, 3692, 5924, 9472, 14887, 23310, 36005, 55314, 84042, 126998, 190138, 283108, 418175, 614429, 896439, 1301168, 1876826, 2693988, 3845134, 5462744, 7720947, 10864828, 15216527
OFFSET
1,2
REFERENCES
Hansraj Gupta, A generalization of the partition function. Proc. Nat. Inst. Sci. India 17 (1951), 231-238.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Hansraj Gupta, A generalization of the partition function, Proc. Nat. Inst. Sci. India 17 (1951), 231-238. [Annotated scanned copy]
MAPLE
J:= m-> product((1-x^j)^(-j), j=1..m): a:= t-> coeff(series(J(min(8, t)), x, 1+max(8, t)), x, max(8, t)): seq(a(n), n=1..40); # Alois P. Heinz, Jul 20 2009
MATHEMATICA
J[m_] := Product[(1-x^j)^-j, {j, 1, m}]; a[t_] := SeriesCoefficient[J[Min[8, t]], {x, 0, Max[8, t]}]; Table[ a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A044117 A044498 A138082 * A098831 A265039 A039405
KEYWORD
nonn
EXTENSIONS
More terms from Alois P. Heinz, Jul 20 2009
STATUS
approved