login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002600 A generalized partition function.
(Formerly M4686 N2002)
2
1, 10, 25, 37, 42, 48, 79, 145, 244, 415, 672, 1100, 1722, 2727, 4193, 6428, 9658, 14478, 21313, 31304, 45329, 65311, 93074, 132026, 185413, 259242, 359395, 495839, 679175, 926064, 1254360, 1691753, 2268267, 3028345, 4021954, 5320139, 7003154 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

Gupta, Hansraj; A generalization of the partition function. Proc. Nat. Inst. Sci. India 17, (1951). 231-238.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

H. Gupta, A generalization of the partition function, Proc. Nat. Inst. Sci. India 17, (1951). 231-238. [Annotated scanned copy]

MAPLE

J:= m-> product((1-x^j)^(-j), j=1..m): a:= t-> coeff(series(J(min(6, t)), x, 1+max(6, t)), x, max(6, t)): seq(a(n), n=1..40); # Alois P. Heinz, Jul 20 2009

MATHEMATICA

J[m_] := Product[(1-x^j)^-j, {j, 1, m}]; a[t_] := SeriesCoefficient[J[Min[6, t]], {x, 0, Max[6, t]}]; Table[a[n], {n, 1, 40}] (* Jean-Fran├žois Alcover, Mar 13 2014, after Alois P. Heinz *)

CROSSREFS

Sequence in context: A014090 A154057 A074814 * A087473 A014120 A003001

Adjacent sequences:  A002597 A002598 A002599 * A002601 A002602 A002603

KEYWORD

nonn

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Alois P. Heinz, Jul 20 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 14 17:44 EDT 2018. Contains 313751 sequences. (Running on oeis4.)