login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002579 Number of integral points in a certain sequence of closed quadrilaterals.
(Formerly M2440 N0967)
2
3, 5, 8, 12, 17, 23, 30, 37, 45, 54, 64, 75, 87, 99, 112, 126, 141, 157, 174, 191, 209, 228, 248, 269, 291, 313, 336, 360, 385, 411, 438, 465, 493, 522, 552, 583, 615, 647, 680, 714, 749, 785, 822, 859, 897, 936, 976, 1017, 1059, 1101, 1144 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

REFERENCES

Ehrhart, Eugene; Deux corollaires de la loi de réciprocité du polyèdre rationnel. C. R. Acad. Sci. Paris Ser. A-B 265 1967 A160-A162.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 1..1000

E. Ehrhart, Deux corollaires de la loi de réciprocité du polyèdre rationnel, C. R. Acad. Sci. Paris Ser. A-B 265 1967 A160-A162. [Annotated scanned copy]

FORMULA

Ehrhart (1967) gives a g.f. on page 161.

G.f.: (x^5+x^4+x^3+x+1)/((1-x^6)*(1-x)^2). - Sean A. Irvine, Apr 25 2017

MATHEMATICA

Rest[CoefficientList[Series[(x^5 + x^4 + x^3 + x + 1) / ((1 - x^6) (1 - x)^2), {x, 0, 40}], x]] (* Vincenzo Librandi, Apr 26 2017 *)

CROSSREFS

Cf. A002578.

Sequence in context: A241567 A131674 A095173 * A023544 A133263 A238531

Adjacent sequences:  A002576 A002577 A002578 * A002580 A002581 A002582

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Sean A. Irvine, Apr 25 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 16 04:19 EST 2018. Contains 318158 sequences. (Running on oeis4.)