login
Restricted partitions.
(Formerly M1070 N0404)
8

%I M1070 N0404 #32 Oct 17 2023 05:26:00

%S 0,0,1,1,2,4,7,13,24,42,76,137,245,441,792,1420,2550,4576,8209,14732,

%T 26433,47424,85092,152670,273914,491453,881744,1581985,2838333,

%U 5092398,9136528,16392311,29410243,52766343,94670652,169853138,304741614,546751437,980952673,1759973660

%N Restricted partitions.

%C Number of compositions n=p(1)+p(2)+...+p(m) with p(1)=3 and p(k) <= 2*p(k+1), see example. [_Joerg Arndt_, Dec 18 2012]

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vincenzo Librandi, <a href="/A002574/b002574.txt">Table of n, a(n) for n = 1..200</a>

%H Shimon Even and Abraham Lempel, <a href="https://doi.org/10.1016/S0019-9958(72)90149-0">Generation and enumeration of all solutions of the characteristic sum condition</a>, Information and Control 21 (1972), 476-482.

%H H. Minc, <a href="http://dx.doi.org/10.1017/S0013091500021945">A problem in partitions: Enumeration of elements of a given degree in the free commutative entropic cyclic groupoid</a>, Proc. Edinburgh Math. Soc. (2) 11, 1958/1959, 223-224.

%e From _Joerg Arndt_, Dec 18 2012: (Start)

%e There are a(8)=13 compositions 8=p(1)+p(2)+...+p(m) with p(1)=3 and p(k) <= 2*p(k+1):

%e [ 1] [ 3 1 1 1 1 1 ]

%e [ 2] [ 3 1 1 1 2 ]

%e [ 3] [ 3 1 1 2 1 ]

%e [ 4] [ 3 1 2 1 1 ]

%e [ 5] [ 3 1 2 2 ]

%e [ 6] [ 3 2 1 1 1 ]

%e [ 7] [ 3 2 1 2 ]

%e [ 8] [ 3 2 2 1 ]

%e [ 9] [ 3 2 3 ]

%e [10] [ 3 3 1 1 ]

%e [11] [ 3 3 2 ]

%e [12] [ 3 4 1 ]

%e [13] [ 3 5 ]

%e (End)

%p v := proc(c,d) option remember; local i; if d < 0 or c < 0 then 0 elif d = c then 1 else add(v(i,d-c),i=1..2*c); fi; end; [ seq(v(3,n), n=1..50) ];

%t v[c_, d_] := v[c, d] = If[d < 0 || c < 0, 0, If[d == c, 1, Sum[v[i, d-c], {i, 1, 2*c}]]]; a[n_] := v[3, n]; Table[a[n], {n, 1, 40}] (* _Jean-François Alcover_, Apr 05 2013, after Maple *)

%Y Cf. A002572, A002573, A049284, A049285, A047913.

%K nonn,easy

%O 1,5

%A _N. J. A. Sloane_

%E More terms from _Michael Somos_