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More Than 50 Years

1964: Start of integer sequence database to help with thesis

1967 onwards: many contributions from RKG

1973: Handbook of Integer Sequences, 2372 seqs

1988: RKG: Strong Law of Small Numbers

1995: (with Simon Plouffe) Encyclopedia of Integer Sequences, 5K seqs

1996: Online! OEIS = On-Line Encyc. of Int. Segs., 10K seqgs

2004: 100K E-party

2009: The OEIS Foundation Inc., Trustees: David Applegate, Ray Chandler, Russ Cox,
Susanna Cuyler, Ron Graham, Richard Guy, David Johnson, Marc LeBrun, Tony Noe,
Simon Plouffe, self.

2010: OEIS moved off my AT&T home page to commercial hosting site

2020: 337000 entries, 80 editors, 200 updates/day, half-million queries/day, 9000 citation
In the literature



1971: Typical letter
from RKG with

new sequences
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Am. Math. Monthly 1988 |
The Strong Law of Small Numbers g ; ?,?3

+ Wiae « Wi 378
Ricnarp K. Guy viav
Depariment of Mathematics and Statistics, The University of Calgary, Calgary, Albertu, Canada TIN IN4 "

This article is in two parts, the first of which is a do-it-yourself operation, in
which I'll show you 35 examples of patterns thalt seem to appear when we look at
several small values of n, in various problems whose answers depend on ». The
question will be, in each case: do you think that the pattern persists for all a, or do
you believe that it is a figment of the smallness of the values of n that are worked
out in the examples?

Caution: examples of both kinds appear; they are not all figments!

In the second part I'll give you the answers, insofar as I know them, together with
references.

Try keeping a scorecard: for each example, enter your opinion as to whether the
observed pattern is known 1o continue, known not to continue, or not known at all.

This first part contains no information; rather it contains a good deal of
disinformation. The first part contains one theorem:

You can’t tell by looking,.
' It has wide application, outside mathematics as well as within. It will be proved by
L intitmidation.

Here are some well-known examples to get you starled.

Example 1. The numbers 2 +1 =3, 22 +1=5 2" +1=17, 2"+ 1= 257&&‘S

22" + 1 = 65537, are primes.
A3 i

Example 2. The number 2" — 1 can’t be prime unless # is prime, but 2° = 1 = 3,

22 - 1=7,.2" 1=231.2" -1 =127, are primes. Mg a’L ﬁéeg



Example 11. When you use Euclid’s method to show that there are unboundedly

FORTUNATE  many primes: .
NUMBERS 2%t 1m7

(2x3x5)+1=131
. (2x3x5x7)+1=211
L (2Xx3IXSXx7x11)+1=2311

you don’t always get primes:
(2X3X5X7x11x13)+ 1 =30031 =59 x 509
(2X3X5%X7x11X13X%17)+1=510511 =19 X 97 x 277
(2X3X5X7xX11x13X17%19) + 1 = 9699691 = 347 x 27953

but if you go to the rnext prime, its difference from the product is always a prime
5—2=3
11-(2x3)=5
37—-2X%X3x%X5) =1
ngz_%j 223~ (2X3X5X%7) =13
2333 - (2X3X5%x7x11)=23
30047 — (2 X3 xX5x7x11x13)=17
510529 — (2 X 3XSXTX11X13xX17)=19
9699713 — (2 X3 X SX7x 11 xX13 %X 17 x19) = 23



I1. R. F. Fortune conjectured that these differences are always prime: see [8]; [é]

ﬂ'SZQ)E and A2 in [12]. The next few are 37,61,67,61,71,47, 107,59, 61,109, 89, 103, 79.
There’s a high probability that the conjecture 1s true, because the difference can't be
divisible by any of the first k primes, so the smallest composite candidate for
P =1lp, is pi,,, which is approximately (k In k)? in size. The product of the first
k primes is about ¢“: to find a counter example we need a gap in the primes near N
of size at least (In N Inln N )% Such gaps are believed not to exist, but it’s beyond
our present mcans to prove this.

A005235 Fortunate numbers: least m > 1 such that m + prime(n)# is prime, where p# denotes +

the product of all primes <= p.

(Formerly M2418)
3, 5, 7, 13, 23, 17, 19, 23, 37, 61, 67, 61, 71, 47, 107, 59, 61, 109, 89, 103,
79, 151, 197, 101, 103, 233, 223, 127, 223, 191, 163, 229, 643, 239, 157, 167,
439, 239, 199, 191, 199, 383, 233, 751, 313, 773, 607, 313, 383, 293, 443, 331,

283, 277, 271, 401, 307, 331 (list; graph; refs; listen; history; edit; text; internal [ormat)

OIT'SET 1,1
COMMENTS R. F. Fortune conjectured that a(n) is always prime.
The first 500 terms are primes. - Robert G. Wilson v [The first

2000 terms are prime. - Joerg Arndt, Apr 15 2013]
The strong form of Cramér's conjecture implies that a(n) is a
prime for n > 1618, as previously noted by Golomb. - Charles R

Greathouse IV, Jul 05 2011

(a very large entry)



2004: OEIS REACHES 100,000 SEQUENCES
E-PARTY !

Also 40th Anniversary of start of database

Celebrates with E-party
130 guests from 28 countries

Richard Guy: “I told you 40 years ago not to
start this, but you wouldn’t listen”






PART 2

Unsolved problems | never got to tell Richard about

. Operations on numbers and sequences
- The Enots Wolley Sequence and other LES sequences
. Three Cousins of Recaman’s Sequence

- Graphical enumeration and stained glass windows



Some operations on
humbers and sequences



124816 32 64 128 256 512
1024 2048 4096 8192 16384
32768 3 6 12 24 48 96 192
384 768 1536 3072 611248

Periodic, easy - explain!



The Fouriest Transform of n

Write n in that base b >= 4
(T's CALLED & FOURIER TRANSFORM

WHEN YoU TAKE A NUMBER AND CONVERT where you get the most 4’s
1 16 THE BASE SYSTSM WHERE T

WILL HAVE MORE FOURS, THUS MAKING
" N L PICK THE BASS _
y :J?-:}:f:e :\:;S-:IOFOUES,THE NUMBER. a(IO)— | 4 (use base 6)
(4 SAID TO BE “FOURIEST.

A268236

0,1,2,3,4, 11,12, 13,20,
14, 14, 14, 14, 14,24, |14, 24,..

Teaching math was way more fun after tenure.

Zach Weinersmith, Saturday Morning Breakfast Cereal



The Curling Number of a Sequence

Definition
of

Curling ...
Number Y&

S = FINTE STR)
=2 XYY = XY

max # = CYRLING NUMBER
OF £

S=7522522522, k=3



Gijswijt’'s Sequence

Fokko v. d. Bult, Dion Gijswijt, John Linderman,
N.J.A.Sloane, AllanWilks (]. Integer Segs., 2007)

Start with |, always append curling number

INS
N
N
(8

2 2 3 2 2 2 3 2 2 2 3 3 2

N NN N N M MM

w20 =4 (A090822)



Gijswijt, continued

Is there a 5!

300,000 terms:no 5
2.10° terms:no 5

10'2Y terms:no 5

NJAS, FvdB: first 5 at about term 10



RUNS

HHHTHTTTHHT

, . RUNS transform=31132 ...




RUNS Transformation of a sequence:

HHHTTHTTH... becomes 3212...
Kolakoski A2 =12,2,1,1,2,1,2.2,... Is fixed (A mystery)

Golomb A1462 =1,2,2,3,3,4,4,4,5,5,5,6,6,6,6,7,... is fixed

an) = Cn?1+¢

Are the two hybrids A156253 and A321020 analyzable?



RUNS, RUNS, RUNS

A306211, from a high-school student, Jan 29 2019

Start with S = 1
Append RUNS(S) to S

Repeat
1 When first see
11 1 2 3 4 5 6
112 1 | 3 E 37 é 60 5225 E’T?
11221 ’ ’ ’ ’
11221221 Conj. 1: 5is max term

1122122422121 Conj. 2: Every n appears

1122122122121221212111

After 65 generations (10713 terms), stillno 6 (Ben Chaffin)



The Enots Wolley
Seguence

Suggested by Scott Shannon (Melbourne) in August 2020

The Australian politician Enots (“Snotty”) Wolley?



“LES” Sequences

Lexicographically Earliest Infinite
Sequence of distinct positive numbers
with property that ******

No other condition: 1,2,3,4,5,6, 7, ... A27

(The earliest of them all!)



LES examples

EKG sequence: gcd(a(n), a(n-1)) >1 for n>2:
1,2,4,6, 3,9, 12, 8, 10, 5, 15, ... A64413

The Yellowstone Permutation: gcd(a(n), a(n-2)) > 1 and A98550
gcd(a(n), a(n-1)) = 1 for n>3:

1,2,3,4,9,8, 15,14, 5,6, 25, 12, 35, 16, 7, 10, 21, ...

The Enots Wolley Sequence: gcd(a(n), a(n-1)) > 1 and A336957
gcd(a(n), a(n-2)) = 1 for n>2:

1,2,6, 15,35, 14, 12, 33, 55, 10, 18, 21, 77,
T

Not 4!

(Two other unsolved LES sequences dear to my heart, Sigrist’s A280864, and the set theory version of Yellowstone, A252867)



A336957

The Enots Wolley Sequence

N L LAI3IISI1G61 1% )0
_a(n) L 12 16 [IFI3S/IR 1 (132 {651 10

Y L 1 o o 1 o

3 ! ™ il il ol

5 ! .1 A

37 AW

T o | &

a(n-2) a(n-1) a(n)



The Enots Wolley Sequence (cont.)

Ker(n) := set of primes dividing n.

Theorem 1: For n>2, a(n) = smallest m not in sequence such that:

;) Kec(m) N Kec(ala-8) F 75
() Kec () a HKec (a(n-2)) = &
(iu’) es (M> NN Ker (a(v\—]>> X ?9

Proof: m exists, is unique, and a(n) can’t be less than m.



The Enots Wolley Sequence (cont.)

Theorem 2: For n>2, a(n) is divisible by at least two different primes.

So not a permutation of pos. integers.

No primes or prime powers except 1 and 2.

Conjecture 1: Sequence consists of 1, 2,
and all numbers with at least 2 prime
factors.

Theorem 3: (a) Sequence is infinite.
(b) For any prime p, p divides some term.
(c) For any prime p, p divides infinitely many terms.
(d) There are infinitely many even terms.
(e) There are infinitely many odd terms.



The Enots Wolley Sequence (cont.)

Theorem 4: When an odd prime p first divides a(n),

a(n) = qp
where q is a prime < p.

Whatis q ?

Conjectures: q=5iffp=7
q = 3 for exactly 34 values of p (2, 5, 11, 13, 17, ..., 233, 367)
q=2forp=3, 7, ..., and all primes >367

Conjecture: For any odd prime p, there is a term 2p.

Conjecture : All even numbers (except 2k, k>1) appear.



The Yellowstone Permutation Theorem

A98550 a(n) = smallest number not yet in seq. such that
gcd(a(n-2), a(n)) >1, ged(a(n-1), a(n) = 1.

1,2,3,4,9, 8, 15, 14, 5, 6, 25, 12, 35, 16, 7, 10, 21, 20, 27
Theorem 5(*): Every positive number appears

Proof: 1. Sequence is infinite
2. Given B, exists n_0 s.t. n>n_0 implies a(n) > B.

3. Every prime divides some term.
4. Any p divides 00 many terms.
5. Every prime p appears naked in sequence.
6. All numbers appear.
QED

(*) Applegate, Havermann, Selcoe, Shevelev, NJAS, Zumkeller, 2015



The EKG sequence (cont) AG4413
Theorem 6: Every positive number appears

Proof:

There are several steps. (i) Sequence is infinite (easy).
(ii) Let T(m) = n such that a(n)=m, or -1 if m is missing from sequence.
Let W(m) = max T(i), i <= m. Then if n > W(m), a(n) > m.

(iii) Let p = prime. Exists n such that p | a(n). If not, no prime q>p can divide
any term either, because if a(n) = gk then pk would be a smaller choice.
So all terms are products just of primes < p.

Choose n>W(p”"2), say a(n) = gk, for prime q<p, so gk > p"2.

Then pk < p*2 < gk was a smaller candidate for a(n), contradiction.

(iv) When p first divides a(n), say a(n) = kp, then k is a prime < p.
If K = 2 we have a(n)=2p, a(n+1)=p. Otherwise we have a(n)=kp,
a(n)=p, a(n+1)=2p. Either way we see adjacent terms p and 2p.



Proof (continued)

(v) If for some prime p there are infinitely many multiples of p,
then all multiples of p are in the sequence.
If not, let kp = smallest missing multiple of p.
Find n >W(kp) with a(n) = mp. Then kp < mp was a smaller
candidate for a(n), a contradiction.

(vi) If for some prime p all multiples of p are in the sequence
then all numbers appear. For suppose k is smallest missing number.
Find n > W(k) such that a(n) is multiple of kp. Then k was smaller
candidate for a(n), contradiction.

(vii) By (iii) and (iv) we see infinitely many multiples of 2,
and by (v) and (vi) we see all numbers.

QED



Three Cousins of
Recaman’s Sequence

Max Alekseyev, Joseph Meyers, Richard Schroeppel,
Scott Shannon, NJAS, and Paul Zimmermann(*)

(on the arXiv; Fib. Quart. to appear)

(*) P.Z. announced in February 2020 that he and five others had factored the 250-digit
RSA challenge number RSA-250, taking 2700 physical core-years.



Recaman’s Sequence

Ol |2 ] 34 6 | 7|89
Ol | 3] 62 13120 12|21
Ay = Ap—1 — N (A5132)

if positive and new, otherwise

p = 0p-1 + N

- from Bernardo Recaman Santos (Colombia), circa 1992



Recaman, continued

Numbers that take a record number of steps to appear:

| |

2 4

4 131

9 99,734

61 181,653
879 328,002
1355 325,374,625,245
2406 394,178,473,633,984

852655 > 102

(A64228)

(éenjamin ChaEiny

(A64227)




aon . . . . . . . . . . . . .

‘modifer” —

U

ood -

500 -

anh -

300

200 -

100

Te450 Te4+100 lTe=180 Te+200

2202.92, 521470

(Benjamin Chaffin)

Source:
https://oeis.org/A005132


https://oeis.org/A005132

The First Cousin, A(n), n >=3

To find A(n), start with n, and add n+1, n+2, ..., n+k,
and stop when d = n+k+1 divides the sum

p— ™
B/ %

/l
WePs (2, STEVS)
T 5 A zméo/!, 5

A=W % 1 I8 22 306 89 i | £O
% 8 BRI | (/2_

. 1 ﬁ &b J‘u}/ C e u STE?S)
£2 Ey.m; \

) f : |
AnuB-aBUagl [~ IN C Es!
Mt N A RIS




The First Cousin, A(n), n >=3 (cont.)

Our A(n) = minimum k > 0 such that A82183(n) = minimum s > 0 such that

n+k+1 divides (k+1)n + k(k+1)/2 T(n) + T(s) = T(m)

for some m, where T(i) = i(i+1)/2

Which led to the solution:

Theorem 1: Look at odd divisors d of n(n+1), different from n and n+1,
and minimize | d - n(n+1)/d |

Then the minimum s =s(n)is (|d-n(n+1)/d|-1)/2

Theorem 2: Solve for m from T(n-1) + T(s(n-1)) = T(m)
then A(n)= s(h-1)+m-n



n=1: 1

n=8: 8

The Third Cousin C(n) A332580

To find C(n), start with n, and successively concatenate
n+1, n+2, ..., n+k, and stop when

n|n+1 || n+2 ]| ... ||n+k

is divisible by n+k+1. Set C(n) = k.
Or C(n) = -1 if no such k exists!

2 = 12 is divisible by 3. Took one step, so C(1) = 1. || means concatenate

9 is not divisible by 10, so we get 8||9]||10.

8910 IS divisible by 11, two steps, so C(8) = 2.

n=7: 7|8]|9[10][11|[12||13]|14]||15|[16]|17|[18][19]|20 is divisible by 21,
7891011121314151617181920 divided by 21 = 375762434348292934151520

13 steps, so C(7) =13

C(2) = 80: the concatenation 2 || 3 || ... || 82 is
23456789101112131415161718192021222324252627282930313233343536373839\
4041424344454647484950515253545556575859606162636465666768697071727374
576777879808182, which is divisible by 83.



n C(n) n C(n)| n Cn)| n C'(n)
1 1|26 33172 | 51 2249 | 76 320
2 80 | 27 9|52 21326 | 77 59
3 1885 28 11 | 53 53 | T8 248
4 6838 | 29 317 | 54 98 | 79 31511
3 [ | 30 708 | 5 43 | 80 20
6 44 | 31 1501 | 56 20 | &1 D
7 13 | 32 214 | 57 71| &2 220
3 2|33 37 | 08 218 | &3 49
9 1311 | 34 34 | 89 91 | &4 12
10 18 | 35 67 |60 1282 | 85 25
11 197 | 36 270 |61 277 | 86 22
12 20 | 37 19 | 62 o6 | 87 105
13 53 | 38 20188 | 63 A7 | 88 3
11 131 | 39 78277 |64 106 | 89 1151
16 993 | 40 10738 | 65 1| 90 1648
16 44 | 41 287 | 66 890 | 91 2221
17 175 | 42 2390 | 67 7o | 92 218128159460
18 124518 | 43 695 | 63 280 | 93 13
19 263 | 44 2783191412912 | 69 19619 | 94 376
20 26 | 45 3|70 148 | 95 23965
21 107 | 46 700 | 71 15077 | 96 234
22 10 | 47 8303 | 72 64 | 97 321
23 5 | 48 350 |73 313 | 98 259110640
24 62 | 49 21|74 34| 99 109
25 15 | 30 100 | 75 557 | 100 346

A332580

All C(n) known exactly
for n <= 1000,
except two values:

10714 <= C(539) <=
887969738466613

and

C(158) = -1 or > 107114,

Conjecture 3:

C(n) is never -1,
k always exists.




Graphical Enumeration and
Stained Glass Windows

Lars Blomberg, Scott Shannon, and NJAS

Part 1 is on the arXiv (#2009.07918, Sep 16 2020)



Complete graph K_23 9086 cells (R)

Y v 8878 nodes (V)
| f > 17963 edges (E)

L4

. Solved by Poonen
. and Rubinstein 1998

Euler says
E = R+V-1.

R and V about equal
tells us most
2. crossings
are simple.

/ A. P Source:
. ! https://oeis.org/A007678



Complete graph
K_23
with 9086 cells.
Colored by our
special algorithm.

Source:
https://oeis.org/A007678




Motivation

1. Extend work of Poonen-Rubinstein, Legendre-Griffiths to other
families of graphs

2. Desire to create our own stained glass windows, in homage
to Amiens, Sainte-Chapelle, Chartres, Strasbourg.

Our motto: “If you can’t solve it, make art”






Rose
window

Amiens,
France
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The Two Known Results

1. Poonen and Rubinstein, 1998: Number of nodes and cells in K n:

2. Legendre (2009), Griffiths (2010), ditto for K_{n,n}.

or equivalently

Basically <”> minus complicated correction terms.

4

=

- \/
5/\

& - f
RN Sii///

<
- . A
™~ e -
A )
e

T wa

BC(1,3)

Source:

https://oeis.org/A331452



https://oeis.org/A331452

BC(m,n)=m Xn grid
of squares with
every pair of boundary
points joined by a line

BC = “Boundary Chords”




=3 vdyes X 183<

=7 edges X

. =8 edges X

’ / fa‘v}v
vk ; \".,éi N\y’

' : .'}]t

%

Vigs i &

BC(9,2)

Left: Color-coded to
show number of
sides: 3 (red),

4 (orange), 5 (green),
7 (blue),

8 (purple)

Right: Same graph,
colored using our
special algorithm.

Source:
https://oeis.org/A331452



https://oeis.org/A331452

Numbers of nodes & cells in BC(m,n)

m\n 1 2 3 4 5 6 7

1 5.4 3,16 35, 46 75,104 159,214 | 275,380 477,648
2 13,16 37,00 99,142 213,296 401, 544 607,892 1085, 1436
3 30,46 99, 142 297,340 421,608 881,1124 | 1305,1714 | 2131,2678
Af | 75,104 [ 213,296 | 421,608 | 817,1120 | 1489,1916 | 2143,2820 | 3431,4304
5! 159,214|| 401,544 881,1124 | 1489,1916 | 2757,3264 | 39509,4510 | 5821, 6888
6 275,380 | 657,892 | 1305,1714 | 2143,2820 | 3555,4510 | 4825,6264 | 7663,9360
7 477,648\ 1085,1436 | 2131,2678 | 3431,4304 | 5821,6888 | 7663,9360 | 12293, 13968

\

X Open Problem 1:
| Explain these numbers.
BC(1,1) BC(1,2)
(5,4) (13,16)

For 37 rows and cols see A331453, A331452

This is the main problem of this section.




Answers are known for BC(1,n)

Theorem 1 (Stéphane Legendre (2009) and Martin Griffiths (2010))

Define V(m,n,q) = Z Z m+1—a)n+1-Db)

a=1..m b=1.n
gcd{a,b} =gq

Nodes in BC(1,n): 2(n+ 1)+ V(n,n,1) — V(n,n,2)

Cells in BC(1,n): n’+2n+ Vin,n,1)



Max Alekseyev pointed out that the
Legendre-Griffiths results are equivalent to
results in enumerating training sets for threshold
functions found by him and coauthors
(M.A., 2010; M.A., Basova, & Zolotykh, 2015).

Furthermore, their work implies:
Theorem 8: All cells in BC(1,n) are either
triangles or quadrilaterals.

Open Problem 2: Find a purely geometrical proof!



Interior Nodes in BC(1,n)

It appears that most interior nodes in BC(1,n) are “simple”,
I.e. are where just two chords cross.

Forn=1, 2,3, ... the numbers of simple interior nodes are

1, 6, 24, 54, 124, 214, 382, 598, 950, 1334, ...
A334701 has first 500 terms!
Open Problem 3: Find a formula.

This 1s a frequent problem: we have hundreds of

terms of a sequence with a simple definmition;
the OEIS has 340.000 entries: need a smarter

guessing program.



BC(2,n)

Conjecture 5
In BC(2,n) cells have at most 8 sides,
and if n>18, at most 6 sides



BC(m,n)
Theorem 2

The number of nodes in BC(m,n) is at most

%{(m+n)(m+n—1)2(m+n—4) + 2mn(2m+n—1)(m+2n—-1}+2(m+n)

and there is a similar bound for the number of cells.

(These are pretty good upper bounds)
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San Diego, 1998:

Clockwise: Doron Zeilberger, RKG, Susanna Cuyler, me, Max Alekseyev,
Mohammad Azarian, Christian Bower (Photo: Christopher Hanusa)




Two Days Ago!

Jean-Paul Delahaye
1,2,5,7,15, 22, 31, 50, ... A337655

Is there a formula?

" 2 aL -Z---sz x ,( 2 5 oy Are these numbers related to
2 3 6 i J “L’ AR some other problem?
2k 2 »‘r lo |
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Work as much or as little as you like

Contact njasloane@gmail.com

Requirements: Familiarity with Math, English, and the OEIS



