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ON THE MAXIMUM VALUE OF THE NUMBER
OF PARTITIONS OF n INTO & PARTS.

BY
F. O AULUCK, S

CHOWLA, and }
1. Let pn) denote the number of partitons of n
into evactly b parts. . We obviously have

zl"l”j :/J:'u_\"w
Wl

where pin) denotes the number of unrestricted partitions
of n. a function introduced by Fuler. Hardy and
Ramanujan proved the asvmptotic formula

GUPTA.

Tanuary 1gy2.]

pin )~ - , where ¢ =\,
L4\ g0

They also proved a formla fiom which pln) can be
catimated with great rapidity for fairly large values of n.
1. H. Lelmer has used the Hardy-Ramanujan formula
to caloulate pirjogi). Recently Rademacher* has found
an esact  formla for pont suggested by the formula of
Hardy and Ramanujan.

Some months ago, at the suggestion ol Dr, Kothari,
we undertook the study of potn. Although our first
results were clumsy, our investigations got a fillip from
the recent paper of Erdos and Lehner®, which contains

. k N
the remarkable resule that, denoting X b)) by P(n),
r=1
Puln) ( Qe-g.-r)
¥ B =i
pln) s ¢ ’

* Proceedings Nat. Acad. Se. 23 (1937), 78-84.
t Duke Math. Four. 8 (1641}, 345-45-
Vi—1y
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n: log n

’ 1 . < N
where 4 cant, and x s a fixed number (inde-

i
pendent of . This function P, (n)
function of £, and is hence much ecasier 10 study than
s w0 of this paper. In [act the tables given at the end of
this paper sngeest that, regarding 2 as fixed and £ as
variable, fp. w0 has a nnique maximum in the sense that
there exists a number &, such that

is a monotonic

pon) s proaln) for k<l ko
and o) J(n) for b =k,

A)

Generally there appears to be a unique &, but sometimes
there is a consecutive set of numbers &, with the above
property, ¢.g. (03 is maximum for k=13, and p.(14)
is maximuwm for & 4, 5, the term maximum being used
in the sense defined by (4). The value of k, suggested
(but not proved) by the results of this paper, is asympto-
table that £,
differs from ¢ 'a* log n by a quantity which never exceeds
one.

- 1
tic 1o ¢ 'n*log n.  In fact the shows

The results proved in this paper ave:
Turorem L
ut pu(n) 2 .
eV eXp (—-.}rx__t,n-‘ )
o) )
where k—c'n* log n4 xn*.
Tuneorey 11
If ky is the value of k for which piln) is maximum (1.e.,
poln) < pe ) if k= k) then for n>nq
i
ek <ant log n,
s here 8 Is any fixed number>1jc.
I¢ is clear that several problems remain open, €.g8.
the problem of the existence of &y, and the problem of

. gL
proving that ky~c~'n*log 1.

e ——

|
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9. Proor or THEOREM 1L
We start with the identity

o) =pln—kl— 5 pla—k=kiD)

: 1gran—2k

+ = pn Ak—-kur,-—ke_f‘\ .= pn) ‘;..5', 8588 v !
O<r <ry

I<ratragn- ik

This is, as in EL,* an application of the sicve of

Eratosthencs. It isalsoa consequence of the formula

,..
Py(n) = z poon) = pau(n k),
r=1
applied to the “sieve-formula” for Pu(m) given in 1.1,
This enalies us 10 determine the values of 1 fron a
table of p.rtitions. We give some simple casc

puln) =pin k) il ka2, 1)
in all other cases
pilit) < pin—k). (Wi
n'log n 1
For —-—c.g < kon' where ¢ <¢,
filn) _pon oo \
0] <"y “w ok expqeln kj¥—en

~exp -»id."né'}<u’ -

“pon) ,

the Hardy-Ramanujan formula we

therefore

From (B and

show that

4 '
nt p .
PN ata) for ket

pin
This is also a consequence of Theorem 1. T1 ollows
that &, of Theorem 11 satisfics k, < an’ log n, where o i
any constant > 1.¢, 1.6 the second hall of Theorem Il

prm'ed.

*The papet of Erdos and Lebmer will Le referred 1ooas 1
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I'vo poowe the fhiest half, we use the following
meguality,®
. Unore I rn—14 k(k—1)/2
q SGo D <ntm < (I
b ‘n—1 (n—1)! n
A'—x):{k--.l;! (k) Kt < [Ty Whose

. i " v e g V. .
maxinom is vmptotic to ¢V Gn*, where G is a posi-

()
©
Thien AI![

) i
tive constant. For k< n:

net kik—1)2 Kk k=1 )

( k-1 )"‘ {I ’ 2(”.:k . -I-'I} < )‘(’U,
whete /o0 —exp niflog{ )+n) |, where g is any fixed
positive constant. Henee when kontpin) < g(n), where

gin)~n"fexp R (log y208) .
But, by taking a suitable value of 4, log ¢ t24v < 2.5,
while =y7 = 2.5. Thus
0t poin

pin)

which proves Theorem 11

=o(1) for £ < nt,

3. P'roor or rtneoriy L. Consider values of 4
civen by

et 3
k= "'n*log nyxn®.

Ivaluating pon) with the help of the sieve given in § 2,
Wt
pin-k) 1

5= ~= EXP (—1CX).

pin) e
- n ‘ g
Gy —exp {e(n—2k—r)t-enil= Z + z .
¥ (G ) ”

Ll 2N i 1
Fi
r\’.ni rond
M

In zl. v an oy~ and (n—2k—r)t—ntu—3(2kfr)/nd,

*osee 1L Goapta, Proc Ind, Ae. See 16 (1942), 1o1-2, and Auluck
wothes foane (current is e pp. 113-4.
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o I ;
Ihus z ~— e 3 exp (—ern %)
1 n L L
164 3

1
= 1 exp (—ien'
=n~le~ " exp (—ten ?) _Jl__(______)

: t—exp (—~ten -)

—ocTInT e Tt

z"< n z exp 'l —yen ok 40) ’)

.

—1, e =4y
=man e 2 exp (—lern )
a
I
z 3 -3
< e Texp (—lenn ¥) Z 1

Fl
raah
< ne=Fexp (—en')
= o(1).

Therefore S,~2c7n e

Apain ;= 5, Lf}(lrﬂ 2 pln—gk—r —ry

/
< S~k
1Qr dr,Sn—ik

I ) 1 1

—— ) n— kaer:—‘rz ZFZ"Z]

B DR i s A et DA Fap Wl M §
15 <n -3k yun® .

where x, runs over all pairs (r;, 7,0 in which neither 7, nor

r, exc eds n*, ¥, over all pairs in which at least one num-

3
ber exceeds n°.

zif“ n % exp (—?;fx) Z ,CXP [—den (1, -1,]

roraam

=n~%exp (\—322’*) ( z Lo (—dern=?) ):
iR
"t exp(—3e6x, 2)4n/c?

_=s n'*e_“"[zc"f ¥ ']‘3.
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Z.(:rt'écxp[—gcx 2) z exp (—dern™¥)

1Srigm
=4
exp (—3ern™3)
e
™~ L™ =Lntit®
< gn g gk QC_]ﬂgf :
o1).

z ~n"exp (—3ex/2) z exp (—om )
3 Y
~n “exp(—3cx 2 'n
=0(1).

Similarly =, =o(1).

P .1 L2 ’

Ihus S5~y 5 e7 %" | —exp (- dex |-
2.t & LI

. 11 o [2
S, 00 e [E ExXp Z“ifx;‘] *

} h(n)
But -\',—-~S_,-{»...—-S_- (;-m‘-'{ |-*~"_"|'----+Sz;-—1

and 8 0 as v-y«. Hence

P

&
pn) 2 (1 -n : exp[—«}cx—-zc“z'*“],
=1

wh el is Theorem I.

4. The above proof follows the method of EL, with-
out however borrowing any results from that paper. A
shorter proof is possible if we use the results of EL com-
bincd wth the formula

3
Pin) ="y pin) = ps(n+k).
r=1
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Thus from EL
P (" + A}
p(n)

1 L - .
where &k =¢""n*log n ~xn*. Henee changing # into
(regarding £ as fixed)

) 2 i,
P e (20,

where x, is defined by

~exp (—2c7le 1),

(- k)Y log (n—4)

[4

_ntlogn oologny, :
= -}O( 5 ) Fx(n—k)-.

Pan—k)t

We write the last expression as ¢~ log n i xn'.
i
RN
so that x:x,(’zﬂk> +O<10g”>.
n n

But £=0 (n}log n) since x is fixed, and heice.
lim x/x,= 1. Hence

P_{);(_ﬂ;c) - t'xp( B f_e_t.- )

1
n* log n
where k= 5 T

I
It follows that

B PR
(2

pln)  pn)
~n"exp (—tex—2cleTH),
where £ is defined above.

5. The following table gives the values of & for
which p,(n) is maximum, and the corresponding values

of p,(n).




