JIMS 6 (1942)

ciety

niversity of Madras).

stian College, Madras).

ency College, Madras).

ien's College, Delhi).

President, the

F. W. LEVI, SRIVASTAVA

urnal of the fics Student, ad December. litors:—

JUL AGHAVAN

addressed to Engineering, udent should and Annamalan

vill receive 50 can be had

ack numbers ing members

s. 6 per year.

ON THE MAXIMUM VALUE OF THE NUMBER OF PARTITIONS OF n Into k parts.

F. C. AULUCK, S. CHOWLA, and H. GUPTA.

1. Let $p_k(n)$ denote the number of partitions of n into exactly k parts. We obviously have

$$\sum_{k=1}^{n} p_{k}(n) = p(n),$$

where p(n) denotes the number of unrestricted partitions of n, a function introduced by Euler. Hardy and Ramanujan proved the asymptotic formula

$$p(n) = \frac{e^{-r}}{(4 \vee 3)n}$$
, where $e = \pi \vee \cdot$.

They also proved a formula from which p(n) can be estimated with great rapidity for fairly large values of n. D. H. Lehmer has used the Hardy-Ramanujan formula to calculate p(14031). Recently Rademacher* has found an 'exact' formula for p(n), suggested by the formula of Hardy and Ramanujan.

Some months ago, at the suggestion of Dr. Kothari, we undertook the study of $p_z(n)$. Although our first results were clumsy, our investigations got a fillip from the recent paper of Erdos and Lehner†, which contains the remarkable result that, denoting $\sum_{k=1}^{k} p_r(n)$ by $P_k(n)$,

$$\frac{P_k(n)}{p(n)} \sim \exp\left(-\frac{2}{c}e^{-\frac{1}{2}cr}\right),\,$$

- * Proceedings Nat. Acad. Sc. 23 (1937), 78-84.
- † Duke Math. Jour. 8 (1941), 335-45-

number of partitions of n into k parts.

107

, , .

where $k = \frac{n^{\frac{1}{2}} \log n}{\epsilon} + xn^{\frac{1}{2}}$, and x is a fixed number (independent of n). This function $P_{\epsilon}(n)$ is a monotonic

pendent of n). This function $P_k(n)$ is a monotonic function of k, and is hence much easier to study than $p_k(n)$ of this paper. In fact the tables given at the end of this paper suggest that, regarding n as fixed and k as variable, $p_k(n)$ has a unique maximum in the sense that there exists a number k_k such that

$$\begin{array}{l} p_{k}(u) \geqslant p_{k-1}(u) \text{ for } k \leqslant k_0 \\ p_{k}(u) \leqslant p_{k-1}(u) \text{ for } k \geqslant k_{j}. \end{array}$$
 [A)

and

Generally there appears to be a unique k_0 but sometimes there is a consecutive set of numbers k_0 with the above property, e.g. $p_k(63)$ is maximum for k = 13, and $p_k(14)$ is maximum for k = 4, 5, the term maximum being used in the sense defined by (A). The value of k_0 suggested (but not proved) by the results of this paper, is asymptotic to $e^{-1}n^{\frac{1}{2}}\log n$. In fact the table shows that k_0 differs from $e^{-1}n^{\frac{1}{2}}\log n$ by a quantity which never exceeds

The results proved in this paper are:

THEOREM I

where

THEOREM II

If k_1 is the value of k for which $p_k(n)$ is maximum (i.e., $p_k(n) \leqslant p_{k_1}(n)$ if $k \neq k_1$), then for $n > n_0$

$$n^{\frac{1}{2}} < k_1 < \delta n^{\frac{1}{2}} \log n,$$

where & is any fixed number > 1/c.

It is clear that several problems remain open, e.g. the problem of the existence of k_0 , and the problem of proving that $k_1 \sim c^{-1}n^{\frac{1}{2}}\log n$.

2. PROOF OF THEOREM II.

We start with the identity

$$p_{k}(n) = p(n-k) - \sum_{1 \le r \le n-2k} p(n-k-k+r) + \sum_{1 \le r \le n-k+r} p(n-k-k+r) - \dots = p(n) \{ S_{1} - S_{2} + S_{3} - \dots \}.$$

This is, as in EL,* an application of the sieve of Eratosthenes. It is also a consequence of the formula

$$P_k(n) = \sum_{r=1}^k p_r(n) = p_k(n+k),$$

applied to the "sieve-formula" for $P_k(n)$ given in EL. This enables us to determine the values of $p_k(n)$ from a table of partitions. We give some simple case

$$p_k(n) = p(n \mid k) \text{ if } k \geqslant n/2,$$

in all other cases

$$p_k(n) < p(n-k). \tag{B'}$$

For $\frac{n^{\frac{1}{\epsilon}} \log n}{\epsilon'} < k \le n^{\frac{2}{\epsilon}}$ where $\epsilon' < \epsilon$,

$$\frac{p_*(n)}{p(n)} < \frac{p(n-k)}{p(n)} \sim \frac{n}{n-k} \exp\left\{c(n-k)^{\frac{1}{2}} - cn^{\frac{1}{2}}\right\},$$

$$\sim \exp\left\{-\frac{1}{2}ck/n^{\frac{1}{2}}\right\} < n^{-k/2},$$

therefore

$$\frac{n^{\frac{1}{2}}p_{\tau}(n)}{p(n)}=o(1).$$

From (B') and the Hardy-Ramanujan formula we show that

$$\frac{n^{\frac{1}{2}} \, p_k(n)}{p(n)} = o(1) \text{ for } k \geqslant n^{\frac{2}{5}}.$$

This is also a consequence of Theorem I. It follows that k_1 of Theorem II satisfies $k_1 < \delta n^{\frac{1}{2}} \log n$, where δ is any constant > 1/c, i.e. the second half of Theorem II is proved.

*The paper of Erdos and Lehner will be referred to as I.L.

To prove the first half, we use the following inequality,*

$$\frac{1}{k!} \binom{n-1}{k-1} < p_k(n) < \frac{1}{k!} \binom{n-1+k(k-1)/2}{k-1} .$$
 (C)

Then $\binom{1}{k!}\binom{n-1}{k-1} = \frac{(n-1)!}{(k-1)!}\frac{(n-k)!}{(n-k)!}\frac{n^k}{k!} < \frac{n^k}{(k!)^2}$ whose maximum is asymptotic to $e^{2\sqrt{n}}$ $Gn^{\frac{1}{2}}$, where G is a positive constant. For $k \leq n^{\frac{1}{2}}$

$$\binom{n-1-k(k-1)/2}{k-1} < \left\{ 1 + \frac{k^2-k}{2(n-k+1)} \right\}^{k-1} < f(n),$$

where $f(n) = \exp \left\{ n^{\frac{1}{2}} (\log (\epsilon) + \theta) \right\}$, where θ is any fixed positive constant. Hence when $k \le n^{\frac{1}{2}}$, $p_{\lambda}(n) < g(n)$, where $g(n) = n^{-\frac{1}{2}} \exp \left[n^{\frac{1}{2}} (\log \epsilon + 2 + \theta) \right]$.

But, by taking a suitable value of θ , $\log \frac{\pi}{2} + 2 + \theta < 2.5$, while $\pi \sqrt{\epsilon} > 2.5$. Thus

$$\frac{n^{\frac{1}{2}} p_{\varepsilon}(n)}{p(n)} = o(1) \text{ for } k \leqslant n^{\frac{1}{2}},$$

which proves Theorem II.

3. Proof of theorem I. Consider values of k given by

$$k = c^{-1}n^{\frac{1}{2}}\log n + xn^{\frac{1}{2}}.$$

Evaluating $p_k(n)$ with the help of the sieve given in § 2, we get

$$S_1 = \frac{p(n-k)}{p(n)} \sim \frac{1}{n^3} \exp\left(-\frac{1}{2}cx\right).$$

$$S_2 \sim \sum_{n=2}^{\infty} \frac{n}{n-2k-r} \exp\left\{c(n-2k-r)^{\frac{1}{2}} - cn^{\frac{1}{2}}\right\} = \sum_{r \leq n^{\frac{3}{2}}} + \sum_{r \geq n^{\frac{3}{2}}}.$$
In $\sum_{r=2}^{\infty} \frac{n}{n-2k-r} \sim 1$ and $(n-2k-r)^{\frac{1}{2}} - n^{\frac{1}{2}} \sim -\frac{1}{2}(2k+r)/n^{\frac{1}{2}}.$

* See H. Gapta, Proc. Ind. Ac. Sc. 16 (1942), 101-2, and Auluck in this Jour. (current is no) pp. 113-4.

NUMBER OF PARTITIONS OF n INTO k PARTS.

Thus $\sum_{1} \sim \frac{1}{n} e^{-cx} \sum_{1 \le r \le n^{\frac{3}{2}}} \exp\left(-\frac{1}{2}crn^{-\frac{1}{2}}\right)$ $= n^{-1} e^{-cx} \exp\left(-\frac{1}{2}cn^{-\frac{1}{2}}\right) \frac{1}{1} \frac{\exp\left(-\frac{1}{2}cn^{\frac{1}{2}}\right)}{\exp\left(-\frac{1}{2}cn^{-\frac{1}{2}}\right)}$ $\sim 2c^{-1} n^{-1} e^{-cx} n^{\frac{1}{2}}.$ $\sum_{2} < n \sum_{r > n^{\frac{3}{2}}} \exp\left(-\frac{1}{2}cn^{-\frac{1}{2}}(2k+r)\right)$ $= n.n^{-1} e^{-cx} \sum_{r > n^{\frac{3}{2}}} \exp\left(-\frac{1}{2}crn^{-\frac{1}{2}}\right)$ $< e^{-cx} \exp\left(-\frac{1}{2}cn^{\frac{3}{2}}n\right) \sum_{r > n^{\frac{3}{2}}} 1$ $< ne^{-cx} \exp\left(-\frac{1}{2}cn^{\frac{3}{2}}n\right)$

Therefore

$$S_2 \sim 2c^{-1}n^{-\frac{1}{2}}e^{-cx}$$
.

Again
$$S_3 = \frac{1}{2!} \left[\sum_{\hat{p}(n)} \sum_{1 \le r_1 + r_2 \le n - 3k} p(n - 3k - r_1 - r_2) \right]$$

= o(1).

$$-\frac{1}{p(n)} \sum_{1 \le 2r \le n-3k} p(n-3k-2r) \Big] = \frac{1}{2!} \Big[\sum_{1 \le r \le n} -\sum_{3 \le r \le n} -\sum_{4 \le r \le n} \Big],$$

where Σ_1 runs over all pairs (r_1, r_2) in which neither r_1 nor r_2 exc eds $n^{\frac{5}{3}}$, Σ_2 over all pairs in which at least one number exceeds $n^{\frac{5}{3}}$.

$$\sum_{1} \sim n^{-\frac{3}{2}} \exp\left(-\frac{3^{c}}{2}x\right) \sum_{r_{1}, r_{2} \leqslant n^{\frac{3}{2}}} \exp\left[-\frac{1}{2}\epsilon n^{-\frac{1}{2}} \left(r_{1} - r_{2}\right)\right]$$

$$= n^{-\frac{3}{2}} \exp\left(-\frac{3^{c}}{2}x\right) \left(\sum_{r_{1} \leqslant n^{\frac{3}{2}}} \exp\left(-\frac{1}{2}\epsilon r_{3}n^{-\frac{1}{2}}\right)\right)^{2}$$

$$\sim n^{-\frac{3}{2}} \exp\left(-3\epsilon x/2\right) 4n/\epsilon^{2}$$

$$= n^{-\frac{1}{2}} e^{-\frac{1}{2}\epsilon^{2}} \left[2\epsilon^{-1} e^{-\frac{1}{2}\epsilon^{2}}\right]^{2}.$$

$$\times \sum_{r_2 > n^{\frac{3}{\delta}}} \exp \left(-\frac{1}{2} c r_2 n^{-\frac{1}{2}}\right)$$

 $<2n^{-\frac{1}{2}}e^{-3cx/2}e^{-\frac{1}{2}\cdot n^{-\frac{1}{2}}}c^{-1}n^{\frac{3}{2}}e^{-\frac{1}{2}\cdot n^{1/10}}$ = o (I).

$$\sum_{3} n^{-\frac{3}{4}} \exp(-3cx/2) \sum_{r \leq n^{\frac{3}{4}}} \exp(-crn^{-\frac{1}{4}})$$

$$\sim n^{-1} \exp(-3\epsilon x/2)e^{-1}n^{\frac{1}{2}}$$
$$= o(1).$$

Similarly $\Sigma_4 = o(1)$.

Thus $S_3 \sim \frac{1}{2!} \frac{1}{n!} e^{-\frac{1}{2}\epsilon x} \left[\frac{2}{\epsilon} \exp\left(-\frac{1}{2}\epsilon x\right) \right]$.

$$S_{c+1} \sim \frac{1}{v!} \frac{1}{n^{\frac{1}{2}}} e^{-\frac{1}{2} \cdot x} \left[\frac{2}{c} \exp \left(-\frac{1}{2} cx \right) \right]$$

But $S_1 = S_2 + ... + S_{2v-1}$

and $S \rightarrow 0$ as $v \rightarrow \infty$. Hence

$$\frac{p_{\nu}(n)}{p(n)} \sim \sum_{v=1}^{\infty} (-)^{v-1} S_v - n^{-\frac{1}{2}} \exp \left[-\frac{1}{2} cx - 2c^{-1} e^{-\frac{1}{2} cx} \right],$$

which is Theorem I.

4. The above proof follows the method of EL, without however borrowing any results from that paper. A shorter proof is possible if we use the results of EL combined with the formula

$$P_k(n) = \sum_{r=1}^k p_r(n) = p_k(n+k).$$

Thus from EL

$$\frac{p_k(n+k)}{p(n)} \sim \exp \left(-2c^{-1}e^{-cr/2}\right),\,$$

where $k = e^{-1}n^{\frac{1}{2}}\log n + xn^{\frac{1}{2}}$. Hence changing n into r k (regarding k as fixed)

$$\frac{p_k(n)}{p(n-k)} \sim \exp\left(-\frac{2}{c}e^{-\frac{c}{2}r_1}\right),\,$$

where x_1 is defined by

$$k = \frac{(n-k)^{\frac{1}{4}} \log (n-k)}{c} + x_1(n-k)^{\frac{1}{2}}$$

$$= \frac{n^{\frac{1}{2}} \log n}{c} + O\left(\frac{\log n}{\sqrt{n}}\right) + x_1(n-k)^{\frac{1}{2}}.$$

We write the last expression as $c^{-1}n^{\frac{1}{2}}\log n + xn^{\frac{1}{4}}$.

so that
$$x = x_1 \left(\frac{n - k}{n} \right)^{\frac{1}{2}} + O\left(\frac{\log n}{n} \right).$$

But $k = O(n^{\frac{1}{2}} \log n)$ since x is fixed, and hence, $\lim_{n \to \infty} x / x_1 = 1$. Hence

$$\frac{p_k(n)}{p(n-k)} = \exp\left(-\frac{2}{c}e^{-\frac{1}{c}cx}\right).$$

where

$$k = \frac{n^{\frac{1}{2}} \log n}{c} + xn^{\frac{1}{2}}.$$

It follows that

$$\frac{p_k(n)}{p(n)} \sim \frac{p(n-k)}{p(n)} \exp\left(-\frac{2}{c}e^{-cx/2}\right)$$
$$\sim n^{-\frac{1}{2}} \exp\left(-\frac{1}{c}cx - 2c^{-1}e^{-\frac{1}{2}cx}\right),$$

where k is defined above.

5. The following table gives the values of k for which $p_k(n)$ is maximum, and the corresponding values of $p_k(n)$.