%I M3142 N1273 #25 Sep 02 2021 14:08:51
%S 1,1,1,3,37,1,13,638,21,1,1,1,41,588,25872,43,22,2
%N Number of nonisomorphic solutions to minimal dominating set on queens' graph Q(n).
%D W. Ahrens, Mathematische Unterhaltungen und Spiele, second edition (1910), Vol. 1, p. 301.
%D W. W. R. Ball and H. S. M. Coxeter, Math'l Rec. and Essays, 13th Ed. Dover, p. 173.
%D Teresa W. Haynes, Stephen T. Hedetniemi and Michael A. Henning (eds.), Structures of Domination in Graphs, Springer, 2021. See Table 14 on p. 368.
%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
%H Matthew D. Kearse and Peter B. Gibbons, <a href="http://ajc.maths.uq.edu.au/pdf/23/ocr-ajc-v23-p253.pdf">Computational Methods and New Results for Chessboard Problems</a>, Australasian Journal of Combinatorics 23 (2001), 253-284.
%H M. A. Sainte-Laguë, <a href="https://eudml.org/doc/192551">Les Réseaux (ou Graphes)</a>, Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1923, 64 pages. See p. 49.
%H M. A. Sainte-Laguë, <a href="/A002560/a002560.pdf">Les Réseaux (ou Graphes)</a>, Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1923, 64 pages. See p. 49. [Incomplete annotated scan of title page and pages 18-51]
%Y See A002564 for number of distinct solutions.
%Y A075458 gives number of queens required.
%K nonn,more
%O 1,4
%A _N. J. A. Sloane_
%E a(16)-a(18) from "Structures of Domination in Graphs" added by _Andrey Zabolotskiy_, Sep 02 2021