login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002547 Numerator of the n-th harmonic number H(n) divided by (n+1); a(n) = A001008(n) / ((n+1)*A002805(n)).
(Formerly M4765 N2036)
6
1, 1, 11, 5, 137, 7, 363, 761, 7129, 671, 83711, 6617, 1145993, 1171733, 1195757, 143327, 42142223, 751279, 275295799, 55835135, 18858053, 830139, 444316699, 269564591, 34052522467, 34395742267, 312536252003, 10876020307, 9227046511387, 300151059037 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Numerators of coefficients for numerical differentiation.

REFERENCES

W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).

A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

M. F. Hasler, Table of n, a(n) for n = 1..2000 (first 700 terms from Alois P. Heinz)

W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables) [Annotated scanned copy]

A. N. Lowan, H. E. Salzer and A. Hillman, A table of coefficients for numerical differentiation, Bull. Amer. Math. Soc., 48 (1942), 920-924. [Annotated scanned copy]

Eric Weisstein's World of Mathematics, Harmonic Number

FORMULA

G.f.: (-log(1-x))^2 (for fractions A002547(n)/A002548(n)). - Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002

A002547(n)/A002548(n) = 2*Stirling_1(n+2, 2)(-1)^n/(n+2)! - Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002

Numerator of u(n) = Sum_{k=1..n-1} 1/(k*(n-k)) (u(n) is asymptotic to 2*log(n)/n). - Benoit Cloitre, Apr 12 2003; corrected by Istvan Mezo, Oct 29 2012

a(n) = numerator of 2*Integral_{0..1} x^(n+1)*log(x/(1-x)) dx. - Groux Roland, May 18 2011

a(n) = numerator of A001008(n)/(n+1), since A001008(n)/A002805(n) are already in lowest terms. - M. F. Hasler, Jul 03 2019

EXAMPLE

H(n) = Sum_{k=1..n} 1/k, begins 1, 3/2, 11/6, 25/12, ... so H(n)/(n+1) begins 1/2, 1/2, 11/24, 5/12, ....

a(4) = numerator(H(4)/(4+1)) = 5.

MAPLE

H := proc(a, b) option remember; local m, p, q, r, s;

if b - a <= 1 then return 1, a fi; m := iquo(a + b, 2);

p, q := H(a, m); r, s := H(m, b); p*s + q*r, q*s; end:

A002547 := proc(n) H(1, n+1); numer(%[1]/(%[2]*(n+1))) end:

seq(A002547(n), n=1..30); # Peter Luschny, Jul 11 2019

MATHEMATICA

a[n_]:= Numerator[HarmonicNumber[n]/(n+1)])]; Table[a[n], {n, 35}] (* modified by G. C. Greubel, Jul 03 2019 *)

PROG

(PARI) h(n) = sum(k=1, n, 1/k);

vector(35, n, numerator(h(n)/(n+1))) \\ G. C. Greubel, Jul 03 2019

(PARI) A002547(n)=numerator(A001008(n)/(n+1)) \\ M. F. Hasler, Jul 03 2019

(MAGMA) [Numerator(HarmonicNumber(n)/(n+1)): n in [1..35]]; // G. C. Greubel, Jul 03 2019

(Sage) [numerator(harmonic_number(n)/(n+1)) for n in (1..35)] # G. C. Greubel, Jul 03 2019

(GAP) List([1..35], n-> NumeratorRat(Sum([1..n], k-> 1/k)/(n+1))) # G. C. Greubel, Jul 03 2019

CROSSREFS

Cf. A002548, A001008, A002805.

Sequence in context: A229525 A174103 A038319 * A090840 A227775 A204011

Adjacent sequences:  A002544 A002545 A002546 * A002548 A002549 A002550

KEYWORD

nonn,frac

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Barbara Margolius (b.margolius(AT)math.csuohio.edu), Jan 19 2002

Simpler definition from Alexander Adamchuk, Oct 31 2004

Offset corrected by Gary Detlefs, Sep 08 2011

Definition corrected by M. F. Hasler, Jul 03 2019

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 17 21:49 EDT 2021. Contains 343071 sequences. (Running on oeis4.)