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sphantine eqguations’, Prec,
i. Introduction
1L (New York, 1934) 580. The problem of finding complete connectives for the m-valued proposi-
i+ 17, J. London Math. S, ) . . .
tional calculus may be given a purely algebraic formulation as the
problem of determining complete generators of the composition aigebra
on m marks. '
The elements of such an algebra are functions f(2g,2q, ..., 2,), whose
n variables x;, ..., x, range over a fixed finite sct M consisting of m
marks and whose values belong to the same sct; that is, functions which
map M x M x ...x M into 3. Note that, throughout this paper, m will
he used exclusively for the number of marks and » for the numb: ¢ of
arguments in a function.
The fundamental algebraic operation on the elements is conrposition.
L | Let £, &, .o, £, be variables which range over the same set of marks;
rmay be greater than, equal to. or less than n. Suppose that f,(£,, &, ..., £)
(t=1,2,...,n) are n given functions and that each x; is restricted by
being fi(€,, &,, ..., &), (Of course any—or all-—of the £, may be absent
from any f,.) Then f(x,, x,, <> %,,) becomes a function f/(€,, £,,..., ¢,), say,
of the variables &5 -0 €, and we may write

f,(gl’ §27 ) 5) :f[flff‘b ""fn](flﬁ ‘::;?v sy é:y):

o, omitting the argument set if clear from the contoxt,

Fr=Flfute - fal.

["is then said to have been gencrated by tle n+ 1 elewments on the right.
For burposes of distinction, round brackets can conveniently be used
for an argument set and square brackets for functional composition.

A complete generator of this algebra is a function which by itself will
“Nerate by repeated composition every funetion of any number of
‘'suments which belongs to the algebra, starting with the singulary
f.lmction 0, where 6(x) = 2. The basic problem of the theory is the
liscovery of necessary and suificient conditions which a complete
“*lerator must satisfy.

Proc, London Math. Soc. (3) 16 (1966) 167-51

——
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Post’s theorem ((5) 107) solves this problem for the case m =2,
simpler proof of Post’s theorem has been supplied by R. A. Cuninghuy,
Green (1); a description of this proof can be found in an article |
Professor R. L. Goodstein (3).)

The theorem proved in the present paper establishes conditions whj
are necessary and sufficient for a function f(xy, 2y, ...,2,) to be a compl:
generator of the composition algebra on 3 macks (i.e. a complete
nective for the 3-valued propositional calculus), and so gives a compl:
solution to the above problem for the next value, m = 3.

Necessary and sufficient conditions for the particular case m = 3, n = .
were given by Martin (4), who used them to enumerate the compl:
binary conncctives of the 3-valued propositional calculus. The sct «
conditions below, however, is somewhat simpler than Martin’s, as w.
as being discriminative for all values of n. (For the case n = 2, Martin’
original conditions have been simplified by Foxley (2), who showed th.
one of Martin’s conditions was redundant.)

Considerable use will be made of the important thcorem of An
Salomaa ((6) 21) that an n-place function (n > 2) will be a compl:

generator if and only if it generates all 1-place functions. (It is wo*
known that no 1-place function can be a complete generator.) In othus

respects, however, the proof in this paper is self-contained. It must )

pointed out that several writers (notably Salomaa ( (6) (7))) have obtain:
partial results which are implicit in the proof below, but it was felt tha
if these had been used as starting points the proof would have lo:

something in directness and cohesion.

2. Notation (m = 3) ‘
1. The 3 marks may be denoted by 0, 1, 2, but since all the followi!
arguments depend on permutational rather than numerical propertic-

the choice of a, b, ¢ for the marks has been preferred, and these letter

are used throughout eaclusively with this meaning.

2. If ¢ denotes any one of the marks a, b, ¢, then § denotes either «

the 2 marks which is not g; thus, x = @ means that x =05 or = =
(#,,2,) = (@,d) means that (x,,2,) has one of the 4 values (b,b), (b7
(¢,b), (c,¢), and so on.

3. If ¢ is one of the marks, then g’ denotes the image of g il

the particular cyclic permutation @ —b > ¢—>a, and g" denotes !
image of ¢'.
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{. In order to make a later notation easier to print, the argument sct
of the function will in future always be written vertically, thus
Zy
f17
x

n

wnd not horizontally, as was done in the introduction above). The con-
text will, in fact, always be sufficiently clear for this to be abbreviated to

fy),

and the suffix ¢ will always be understood to range from 1 to n. The
argument set itself will be written {2,}. Also

g

1Y

g
f(9).

Similarly, f(a) refers to the set of 2¢ values represented by

will be abbreviated to

a

.
ST}

Dy eee

it often happens that such a set of values can be dealt with collectively.

5. Corresponding capital letters will very often be used to represent
the value of the function for a given argument set, thus

P = f(p)), fle) = E,

ind 5o on. In particular, 4, B, O, will be used (exclusively) to denote
the values of the function on the repeated marks, that is

a
J ? , ete.

a

A =f(a), ie.

These values 4, B, ¢ play a prominent part in the classification of s
nd a function taking these values on the repeated marks will be referred
'0°as a function of fype [4 BC]. Thus, if f(a) = b, f(b) = a, flc) =a,
/will be said to be of type [b a a].

e —————
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6. A similar square-bracket notation wil be used to exhibit the vy

set of any singular

be denoted by o, %

v function. The singulary functions themselves |,

s, and 0. For the present purpose, there is p i

to maintain any close distinction between a singulary function and
value set, and we shall write

to denote that the value set of o is [pgr], ie. that pla) = p, »(b)

p(c) = 7.

In particular, 4 wil

function f(x) = 2, i.e.

o= [pgr]

I always be reserved (as above) for the singula:

0=T[abc].

7. When discussing the generation of singulary functions, it wi|| |
convenient to telescope 3 statements such as

S(p;

V=P, fa)=Q, f(r)=r

into the composite statement

Sfl2: q; rd=[PQ R].

(This was the reason for seleeting notation (4) originally.)

Thus [p; g; r

and this must be ke

columns of [p, q; 7).
If o, denotes the singulary function (P: .70, flp; q; ;] may be writ:
alternatively as

abbreviating as in (4).
The rows of the above n x 3 array are the value sets of # singulsr,
functions, and the columns are 3 argument sets of J. We shall be ¢
cerned presently with the problem of generating all the singulary functic
of 3 marks, starting with 6. We obviously do not want to have to spees
the values of f for all the 3» Possible argument sets, but rather to <\
that f is a complete generator by fixing its values for as Jew argumic’

sets as possible.

i] is to be thought of as a shortened forin of the u x 3 ar )

P ¢ o1y
P2 Qs 1y
P G, T

Pt in mind when reference is made to rows

1

P2 .
f . » or f[gpl]’

Pn

At each stage, we shall be interested in generating !
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.ingulary functions [P @ E], using only singulary functions [p; ¢; 7], all
.f which have already been constructed. At each step at which fis used,
(herefore, it is necessary to ensure that the columns of the above array
e confined to the argument sets for which the value of f has actually
heen specified, while the rows of the array include only the value sets
. singulary functions already generated.

8. Iteration of a singulary function ¢ by jf means the derivation of
the new singulary function
¥

f ¥
¢
The iterate of any function ¢ by f will always be denoted by ¥, the

iterate of M by @, and so on.
Note that, since [4 B C]is fla b c],

[4 BC]= 6w,

e =flg], ie.

3. Definitions (general value of m)
1. Conjugation :

Under any given permutation of the marks, f will be transformed
into & function f; which may or may not be different from f. Let fi, fs, ..., /i
be the complete set of distinet functions obtainable from f by applying
in turn all m! permutations to the set of marks. These functions are
called the conjugates of f. Their total number I will always divide m!.

If, in particular, I = m!, i.e. if there is no permutation of the marks
ather than the identity which leaves f unaltered, f will be called fully
conjugated.

Exavperes (m = 3, n = 2).

Bl .
leabc
a |bbec bcbd cca cbc babd ccbd
I = 6) blcaa |aac cca baa acc ccb
c |caa becdb labdb |baa babd ab o
)
+ x
leabc
' a |bbec cbec
=2) blace |aac
¢c |laba abb

. Tn the particular case m = 2, two distinet conjugates are described as
“ials, and a function nof fully conjugated is called self-dual.

e e R el Bt e e ——————
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2. Closure
A subset S of the set M of marks will be said to be closed under [t

flz)e S whenever z,68 for i=1,2, ..., n

Examvere. If fis of type [b a o] and if
f(x)) =¢ whenever 2;=¢,
the set {a, b} is closed under f.
3. Invariance ‘
If 2 is any partition of the marks into disjoint classes, we sh.

following Martin (4), write
T~y (2)

to denote that z and v belong to the same class in 2,
A partition Z of the sct of marks will be said to be invariant under

flx) ~ f(y,) (#) whenever u; ~ y; (#) for i=1,2 .., n

Examepre. The partition @|be is invariant under the function in I

above, since
)-10)
o)~

o) = 4Le) ~o16) ~o(0)
4. 8-Function

A subset of the marks will be called proper if it is neither the emj"
set nor the complete set of marks.

A partition of the marks will be called tmproper either if each m
belongs to a different class in the partition or if every mark belongs *
the same class, and proper otherwise.

A function f will be called a §-function if

(1) there is no proper subset of the marks which is closed under,

-and

(2) there is no proper partition of the marks which is invariant undc:;
(This extension of the concept of a 8-function will be seen to harmer
with the usual definition ((5) 43) of a 8-function for the particular ¢
m = 2, since the second condition above is nugatory when m = 2.)

B e —
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These two 8-function properties and the property of being fully

njugated may be further illustrated and shown to be independent by
e following simple examples, again taking m = 3, n = 2, and this time
jing commutative functions.

a a b ¢ e}
a a a b c
c a a b ¢

# and %, are fully conjugated but are not d-functions, because under
7 the subset {a,b} is closed (though no partition is invariant under 7)),
while under %, the partition a|bc is invariant (though no subset is closed).

%, is a 8-function but is not fully conjugated, as it is unaltered by the
cvelic permutations g — g” and g — ¢”.

i. Necessary conditions (general value of m)

It is clear that, even for the general value of m, any complete generator
must be fully conjugated and must be a &-function. (This observation is
really only a synthesis, using a new terminology, of various selected
necessary conditions which have already been noticed by other writers.)

For, if a certain function f” is generated from 6 by a particular composi-
tion sequence, the application of a given permutation to the marks
throughout the process must yield a function conjugate to f’. Hence,
if a given function is not fully conjugated it cannot possibly generate by
itself those functions which do have m! conjugates, and hence it cannot
be a complete generator.

Similarly, if a given function leaves a subset S closed or a partition &
nvariant, every repetition of the function preserves that property. Such
s function, therefore, can never generate by itself those functions which
do not possess that property, and when S or & is proper this means that

not all functions can be constructed.
When m = 2, the above conditions are equivalent to Post’s conditions

that f is a non-seif-dual §-function, and we shail now turn to the case
m =3 for further investigation.

9. The algebra of 3 marks

The above necessary conditions impose certain immediate limitations
o1 the properties of a complete generator. Tirst, flg) # g for any g, from
e closure requirement, and so 4 # a, B# b, C# c. Hence there are,
ssentially, only 2 distinet types of function, type [b @ a] and type [b ¢ a].

B
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1. Type [b a a)
This has been chosen as the representative of the 6 possible cases

[ABC]l=[baal,[caal, [bcb], [babd], [ccal, [ccb],

which are all basically the same.

A function of type [baa] is always fully conjugated, but sucl, )

function may fail to be a 3-function, as in examples & and % alq,.
This will happen if and only if either
(1) the subset {a,b} is closed under f, i.e.

flx) =¢ whenever z;=¢, or
(2) the partition a|bc is invariant under f, i.e.
f@) ~ fly) whenever (x;,y,)=(a,a) or (d,a).

(In particular, this means that f(z;) =a whenever z; =g, sin

f(6) = f(e) = a.)

Clearly, with a function of type [b a a], no subsets of the marks otl.

than {a, b} and no partitions other than «|bc need be considered. (\:

first sight, it might be thought that the partition ab|c could also !
invariant under f. It will be seen, however, that in that case it wou

happen that f(z;) = ¢ whenever x; = ¢, so that the subset {a,b} woul:
be closed under f and the function would already have been rejected f -

that reason.)

2. Type [bca]

The 2 cases [4 B C] = [bca] and [c a b] are effectively equivalent, an!

the first has been selected as typical.

A function of type [bca] is always a S-function, since, whatev:-

values the function f(x;) takes when the ; are not all the same, !
subset of the marks can be closed under f and no partition of the mar'.
can be invariant under /.

A function of type [bc¢a] may, however, not be fully conjugated, -
in example %; above. When this happens, it must be the cyclic permut
tions of the marks that leave the function unaltered.

TerEOREM. Necessory and suficient conditions for a given n-pl

Junction to be a complete generator of the composition algebra on 3 mar
are that n > 2 and that the function is a fully conjugated 8-function.

The nccessity of these conditions (for the general value of m) I
already been explained. The sufficiency of the conditions for the ¢!
m = 3 will now be proved by showing that any function which sati=f
them will generate all the singulary functions of 3 marks, from wh
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e result will follow from Salomaa’s theorem, mentioned earlier. The
roof is in two parts.

Proof—Part 1. A function of type [b a ]

Such a function is always fully conjugated; by hypothesis, it must be
. 3-function.

The method of proof adopted for this type of function concentrates
irst on establishing that the functions which are the other permutations
of [baal, namely [aba] and [aab], can also be generated in each of
.arious cases that arise. By this means, the last stage of the proof can
te completed very quickly, taking all the cases together.

Now
8 =l[abc],
0V = [baal,
6 = [a b b],

and to start with these are the only singulary functions available.
Since the partition a|bc is, by hypothesis, not invariant under f, there
must exist (at least) 2 sets {r;}, {s;} with the property that

and  f(r;) ~ f(sy),
either (T’i? Si) = (a" a) or (/r_ S‘i) — (CZ, &)
flr))=a and f(s;) =a.
If (r,s,) = (a,a), define p; =b, ¢; =a, and if (r;,s;) = (4,a), define

pi=a, ¢;=b. Then, since [baal, [abb], [abc] are available, we can
generate [p; ¢; r;] and [p; ¢; s;] in all cases. Let

f(p)=P and flg)=0Q.

Ty~ S

re. for all 4,

while, say,

Then
nd flpiqr) =[PQal=¢p, (say)
flpig: 8,1 =[PQa)=p, (say).
(1) (P,Q) = (a,a) or (@,a).
If (P,Q) = (a,a),
o, =[aadl, g,V =[bbal, @ =[aab],

since f(b) and f(c) are beth equal to a). But [p; e g,]is (@ a b} or [baal,
Y1 we can now generate
flpiaql=[PbQl=[aba],
..:'.'ing the third permutation of [baa]. (See the observation at the
“inning of this part of the proof.)
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Similarly, if (P,Q) = (d,a),
pr=ladal, o,V =[aab], ¢ =[bba]
But [p; 6 ¢;]is [b b a] or [« b b], enabling us to construct
flpibg]=[PaQ]=[aaa]
the iterate of which is [« b a], completing the trio.
(2) (P,Q) = (a,a) or (a,a).
If (P,Q) = (a,a),
v, = [adal,

§01(U = [b a b]’ ?1(2) = [CL b CL],
while if (P,Q) = (a,a), '
pp=[aadl, o,V =[abal, 9, =[bub]

To complete (2), the second part of the §-function hypothesis is need.

Since the subset {a,b} is not closed under f, there must be at least

argument set {d,}, with each d, cqual to @ or b, such that

fldy) =c.

Define also the sct {e;} such that e; = @ or b according as d; =5 or
respectively, and let

fle) =E.
Now
le;d;d;] is [abb] or [baa],
[e;d;a] is [aba]l or [bada)],
[e;d;b] is [abb] or [bab],

and so we can construct
fle;d;d;] =[E cc,
fle;dia] =[Ecb],
fle; d; b] =[Ecal.

Suppose first that E =a. Then we have the 5 functions ([b¢:
[abb], [abc], [acb], [acc]) necessary to generate

flpiris] =[P aal,
flpisir]=[Paa)l

Thus, whether P = a or P = @, we can obtain (by iteration, if necessar:

the function [« @ b). :
Suppose, on the other hand, that £ = a. Then f[E ¢ s;] = [a a ], 2*

7 again [a a b] can be produced.

This completes the first stage of this part of the proof, giving, in
cases, the functions

[baal, [aba)], [aab)]
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il their iterates

[abb), [babl, [bbal.
Now

flbad)=(abe,

and since d; = @ or b and all permutations of [baa] and [ba b] are now
available, all permutations of [4 b ¢] can be generated.

These permutation functions can then be applied to the 6 functions
above to give by composition the remaining 12 functions which have
just 2 values the same. (For example, to obtain [b ¢ b], apply to [ba 5]
the transposition (a,¢), i.e. the fanction [cbal)

Finally, the iterates of, e.g., [b ¢ c]are [a a a] and [b b b), and then

fld; d; d;] = [ccc].

Proof—Part 2. A function of type [b ¢ a)

Such a function is always a d-function; by hypothesis, it must be fully
vonjugated.

For functions of this type, it will be convenient to divide the 27 singulary

functions into 5 groups, and to give each group a reference symbol for
use in the proof.

(«) The 3 ‘constant’ functions [@aa], ete.

A) The 9 functions [cbb], [acc], [baa] and their permutations.

)
1) The 9 functions [b ¢ ¢], [caa], [abb] and their permutations.
7) The 3 odd permutations of the marks,

)

p) The 3 even permutations of the marks,
It will be seen as the argument below develops that whenever a function
of type [b ¢ a] is capable of generating one funection belonging to

“roup it must gencrate every function belonging to that group.
Now

(
(
(
(
a given

0 =[abec],
0V = [bcal,

. 0% = [cab],
*IVing group (p).

I {p} is an arbitrary argument sef, p: v 271, [} 2% 21, [pi 2 p7]
e all eyelic permutations of [@ b c], and so can all be generated.
Let
Jlpipip{] = [X Y Z),

licre X, ¥, Z are not necessarily all distinet. Then

- fpipi p] = [Y Z X]

v p; pi] = [Z X 7).
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Now, for some selected sets {p,}, [X ¥ Z] will be a cyclic permut.:
of [@bec]. But this cannot happen for all such sets {p,}, becau.
that case f, contrary to hypothesis, would not be fully conjugated.

Hence from 0 and its iterates we can generate at least one new singul,

function, together with its cyclic permutations. [X Y Z] will from .
on be used to refer to this new function, and {p.} to the set which prod,,
it. There are three cases to consider, according to which group of funet;
[X Y Z] belongs to.
Case 1. Two of X, 7, Z equal and the third different (group (A) or (i
Case 2. [X Y Z] an odd permutation of the marks (group (=)).
Case 3. X =Y = Z (group (x)).

Casg 1. Z =Y # X,
(This choice has merely been made for definiteness.

matter which pair is taken to be equal.)
flpipipi] = [X Y Y],
and since X # 7Y, either X =Y or X = Y".
In addition to group (p), we can generate immediately

(x) the 3 permutations of [X ¥ Y] and, by iteration of these, tle -

permutations of [X’ ¥ Y']and the 3of (X" Y" Y"],
that is, either the whole of group (A) or the whole of group (u).

If X =Y’ [p;p;p;] is onc of the functions («) for all choices of |

and so has been constructed. Thus we can generate
flp;pipd =Y X X].
If, on the other hand, X =Y", [p}p, p;] is one of the functions

and then
f[pz, pz L] - [YXX]

By a similar method, we construct
XX, VX X, ¥ X" X"
(o) and (B) together comprise the groups (A) and (u).
Consider next [p,p; X], which is either [X X' X], [X' X" X],
[X” X X]. One of these, [X' X" X], is a function from group (p), ¢
is from (A), and one is from (p).

() the 3 permutations each of [¥

_circumstances, and so, similarly, can [p; X’ p;]. But
flpip X]=[XY X'],
flp: X' p7] = [X X" Y],

and so, whetherY = X" or ¥ = X’, we obtain [X X” X'], an odd permt’

tion of the marks, and hence group ().

Since the eyc.
permutations of [X Y Z] are all available anyway, it clearly does 1. -

So [p; p; X] can be constructed I -

3.-VALUED P'lIt0)

nally, [p; p; X]and [p; p;
h allows the generation of

fpii

Jlpir
. of these is necessarily [1" ]
'.ch case in this part of tl
wing the generation of t!
mple, n = 4 and the same -

EXAMPLE 1.
flabc] =[beal andsuppc
Then
¢c b b
b a a
f a ¢ ¢ [a bb]
b a a
[
b
f a
b

~asE 2. [X Y Z] an odd pe
In this case, all 6 permut

“*h, that is, groups (=) and

Iz
~re, since [X Y Z] is an od

Uefine {r;} and {s;} so that

1y (ry,8;) = (X, Y) or (¥,

2} ry# pyand s; # i

1 choose q, so that p;, ¢
I different. According

(PP :
Liave, respectively,
(Ti’ 3;)
q;
t
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wih%e a cyclic permutai;,

' such sets {p;}, becausc |
ot be fully conjugated.

ate at least one new singuly,
ons. [XY Z] will from n.
p;} to the set which produ.
g to which group of functio,

d different (group (A) or (i),
= marks (group () ).

efiniteness. Since the cyel;

anyway, it clearly does ni:

¥,

mmediately

by iteration of these, the :

E‘[XU YI/ YI/]’

nole of group (;1).

ns for all choices of p,
ener

Y].

is one of the functions (a).

X].

[Y’ X, X(]’ [Y// .X” X”]'
) and (p).

r [XX'X], [XTX"X] o

anetion from group (p), oW

X] can be constructed iu @

27]. But
],

Y],

[X X" X'], an odd permut:

e S
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pinally, (2} P} X1 end [} p} X'] are always from group (p), (A), or (),
‘Lich allows the generation of
floip; X]1=[Y ¥ X],
floip; X'] =YY X7].
Jne of these is necessarily [Y Y Y], giving group (x).
Fach case in this part of the proof will be illustrated by an example

Jowing the generation of the first function in each group. In each
xample, n = 4 and the same set {p;} has been taken.

['xAMPLE 1.

b ¢ a
flabcl=[bca] andsuppose, say, that fz Z z =[baa] (A).
a b ¢
Then
¢c b b b ¢ b
b a «a a b b
f a c ¢ =[abb] ([LL), f c a b —"—‘[bdG] (W):
b a «a a b b
c o ¢
2 ¢ Y caa w
a b c| )
b ¢ ¢

Casg 2. [X Y Z] an odd permutation of [a b c].
In this case, all 6 permutations of the marks are generated to start
with, that is, groups («) and (p).

flp:pipi] = [X Y Z],

where, since [X ¥ Z] is an odd permutation of the marks,

X=Y =2".
Define {r;} and {s;} so that
“) (ri"gi) = (X:Y) or (Y:X)y
(2) 7, # p; and s, # pl.
then choose q, so that p,, q,, r; are all different, and ¢; so that p}, s;, ¢;

‘e all different. According as

(pop) = (2, Y), (¥, X), (X, Z),
« have, respectively,

(ry,8) = (¥, X), (X, ¥), (¥, X),

q; =X , Z , Z ,
t, = Z 7z, Y.

1
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Finally, since ¢, = X, it is possible to choose u; so that X, ¢, u, arc of these fameti

different. i duE
) o ) other remainin;
We now show how, in all cases, it is possible to generate a sing) - 3 (), (A), and {
function y having at least 2 values the same. The usual capital-lct: LT :
notation has been used. FXAMPLE 2.
flpigir] =[X Q R],
flZ r;s,]1=[Y RS] (sinceZ' =7Y), flabc)

‘f[Pé s; b 1=[Y S T],
fIX t,u)=1[Z TU] (since X' =2),

and these can all be generated, since all singulary functions on the |- -
have been defined to be permutations of the marks. 5
(1) If S = X, the third function has 2 values the same, unless 7' = J b
in which case the fourth function has (at least) 2 values the same. (2)! Lo
S =Y, either of the middle 2 functions has the property. (3) If § =/
the second function has 2 equal values, unless R = X, in which casc t! n
first function will serve. Thus, in all cases, a function y has been deriv: b
Now suppose first that x has all 3 values the same, giving group . a
by iteration. f ¢
Define {v;} so that a
(p-i;”i) = (Y:Y)> (X’Z): or (Z,X)
This ensures that [Y p, v,] is either a constant function or a permutati
of the marks, and hence admissible. It is easily verified that [Z p;. - f
and [X p] v;] have the same property. Then
flY pyo]=[X X V],
fIZ p, o] =Y Y V], so when S =« |

@), we have.a

o v Se &
- =~

R o O
o oo e
-~

N e N

fiXpiv]l =12 Z V], Jues the same.
and 2 of these functions have exactly 2 values the same (one belony! It x belongs to grc
to group (A) and one to group (u)), and their permutations and iters:
complete these groups and so the whole set of singulary functions. b b
On the cther hand, suppose that y has exactly 2 values the same. - f b oa
usual, this makes available either all 9 functions (A) or all 9 functions | i’ (3

Define w; = v or w; = v], the choice being made so that [¥ p; 1".jl
among these 9. It is easily checked that [Z p; w;] and [X p] w,] arc
among the same 9 functions, permitting the generation of

JIY p;w] = [X X W],
flZ p;w]=[¥ Y W],
SIX p;w]=1[Z2 Z W] “hieing both (4 «
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.« of these functions has all 3 values the same and another enables
.« other remaining group of 9 functions to be constructed, so that
—oups (k), (), and (g) have all been produced.

F.XAMPLE 2.
b ¢ a
flabel=[bcal, [ Z Z g =[cba] (m).
a b ¢
Leb
c b a
b c a
f b = R) f c = S: f b = T
b ¢ a
[lien
b ¢ ] [ ¢ b7
b ¢ a b
f ¢ b a =[ck..], f a b ¢ =[bES],
la b c] la b ¢
¢ b a ¢ a b
b ¢ a ¢c a b
A Y IS CR T SR DA B CE g
| b ¢ a] ¢ a b}

wnd so when S = a (even if R = ¢), when S = b, and when § = ¢ (even if
I=a), we have a means of generating a function y having (at least)
< values the same.

If x belongs to group (),

b b b a ¢ b
b a ¢ a b ¢
fly % Sl=teevy  flo 0 Dl=pby,
b a ¢ a b ¢
¢c a b
¢ c
ey ol =laavy,
c ¢ ¢

“lueing both (A) and (u).
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If y belongs to group (A), vither case, and

b b ¢ a ¢ ¢ tion ¢ which is e

b a a a b a 1) & cyclic permt

f b ¢ b = [C c I’V], f a0 a b = [b b I’V], group (’ﬂ'), or

b a a a b a 2 a function taki

c a ¢ ; mlll.'b‘t?, the cyclic
c ¢ a If ¢ is an odd pern

e v p|=aaW] o
co 15 ensures that [X'
will give both (x) and (u). ‘+he marks, as are |

If x belongs to group (u), replace the last columns on the left
a, b, ¢, b, to produce () and (}).

Case 3. X =Y =2,
flps P pi] = [X X X],
whose iterates are the other constant functions (k).

Define {I;} so that If, however, ¢ has
(1) &= X or X, «duce one of the v
(2) either [; = p, or I; = p;. L= UL Or wy = v} SO
(When [, is not defined uniquely, either choice may be made.) 1o do [X p¥ w,] ¢

According as

12 of these functi
~up (A) and one frc

(plﬁp‘:) = (X’X,)7 (XI,X”)) (X”’ X)y
we have respectively
l;=Xor X', X', X.

Let f(l,) = L. Then omes possible. 1
XU, ]=[X'L .. Y, (XX W),

, sy W =X, the

fll; P 1=[L X .., s = X, e

' to cover all ca

flpily .. 1=[X L ..] 33, now that gr

The dots denote entries which remain to be filled, but (and this i<’
Important point) the definitions have been so chosen that every I
on the left can be completed using only the 6 singulary functions so |-
available, namely the 3 cyclic permutations (p) of the marks, it
[X X’ X"], and the 3 constant functions (). The dots on the ' one of these is a1
represent the values of the function corresponding to the unspec!

argument sets, but, whether L =X, X', or X", we have gencrs’ TAMPLE 3.
either .

X' X ..] flabcl-
or

[X X"..].



=[bb W],

RO o

. columns on the left |
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:Il, X),

-
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chosen that every Io
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vither case, and whatever the unspecified entry is, this is a new
. ction y which is either
1) a cyclic permutation of [X” X’ X], i.e. a function belonging to
group (m), or
2) a function taking exactly 2 values, i.e. from group () or (1).
{ eourse, the cyclic permutations of ¢ are also derived.
If ¢ is an odd permutation of the marks, define {v;} so that

(pi’ 1)1.) = (X”’X”)) (X’X,): or (X’;X)

wis ensures that [X” p; v,] is either a constant function or a permutation
{ the marks, as are [X p;v,] and [X' p »;]. These produce

fIX"po]=[X X 7],
JIX piv]=[X" X V],
fIX' g o] = (X" X V], |
and 2 of these functions have exactly 2 values the same, one being from
croup (A) and one from group (1¢). These enable the set to be completed.
If, however, ¢ has exactly 2 values the same, it can be used first to
iroduce one of the usual groups, either () or (u), and if we then define
=0 or w; = v} so that [X” p, w;] belongs to the group available, then
walso do [X pf w;] and [p; X" w,], and the generation of
FIX" p wl = [X X W),
fIX p; wl=[X"X W]
flp; X' w]=[X X" W]
‘vcomes possible. These give the other group (u) or (A) since one of
YX W], [X'X W], [X X" W] must belong to (A) and another to (u).
Viless W = X, they will also give the odd permutations () as well.
“at to cover all cases, group (m) can be generated by the following
“ueess, now that groups (x), (A), and (u) are all accessible.
fIX'X [)=[X"X' 1],
flp; X' 1] =[X X" 1],
fIX p; L]1=[X"X L],

sl one of these is an odd perinubation of the marks.

ExayreLz 3.

flabc]=[bcal, f

=[aaal (k).

QRO
>R >No
o oo
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3-VA
Let ally
b = B
o
_ b
f a ML. f &
“ b
Then
a b ¢ b ¢
a a a a b
f 0 o u =[0bL..] I 0 4 =[La..],
a a a a b ¢

{one of these fu

+ Numecrieal resul
=lal ..],

e theorem wi
plete generalon

~
{2 Q@ o
|2 2 o
R o2 o

he first problec
w (n-place} §
cenerators will
unt being take

and we have obtained either [z ¢ ...] or [b ...], which is the functio:.
If ¢ belongs to group (=),

c b a a a al
c a b ¢ ¢ b » others by mu
S c ¢ el = [aa V], f a b ol ™ [ba V], «ifieation, the {
c a b a ¢ b ,"=(”)'

Later, some ath
b ¢ a complete gene
b b b ‘ rately, and wi
f b a cf| [ca V], plete gencrator
b b b < of the argun
stinguished e
and this provides both (1) and (u). ks, which-w
If 4 belongs to gl‘oup ), 1wate function:

c b b o a b oo shall write
c a cf _ , a ¢ c_, _ , X

b c ¢ & =[aa W], f[a b o =[ba W], ‘
c o ¢ I_a ¢ cJ Y s well known
c b b
b b ¢ ve shall now d
f e b al= [ac V] ‘

b b e nctions of typ

“n the valm
will yield (x), and if ¢ is from group (u) a similar composition wit! the values [
last columns on the left replaced by ¢, a, b, a will yield (A). *here are 3 el



], which is the function

=[ba V],

o oY

=[balV],

o8 o o

ilar composition with '
11 yield (}).

<

3-VALUED PROPOSITIONAL CALCULUS 185

I'inally,
b a b c b b
b a a b b a
f b a «a =[eb L], f a b «a =lec L],
b a «a b b a
a b b
a a a
f a ¢ a =[bal],
a a a

i one of these functions gives the odd permutations (7).

6. Numerical results

The theorem will now be applied to the problem of enumerating the
~mplete generators, under various specifications.

The first problem to be discussed is that of determining how many of
‘e m™ (n-place) functions are complete generators. Initially, therefore,
Jl generators will be counted separatcly unless they are identical, no
sceount being taken of the fact that some functions can be transformed

ito others by mere permutations of the argument set. Under this
jeeification, the total number of complete gencrators will be denoted
h) ,(,,"(7&). .

Later, some attention will be given to the problem of enumerating

‘ie complete generators when permutational variants are not counted
wparately, and with this stipulation the number of essentially distinct

vmplete generators will be denoted by ¢,.(n). (This question of rearrange-
+nts of the argument set which give effectively the same function must
« distinguished carefully from the question of permutations of the set
“marks, which was under consideration previously in connexion with
njugate functions.)
We shall write

N=mm, r=3w1_1] g=21-1_1,

'tis well known (see, for example, (3)) that
Gon) = 22525,
Pwe shall now derive the formula for AN
Functions of type [b a a]
When the values of the function on the repeated marks have been

[} . .

‘. the values for 3»—3 = 3r argument sets remain to be specified,
i -
" there are 3 choices for each value.

Ty —
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From the total number (3%) of ways of specifying these values (; haa) is the represe

function must be subtracted the total number of functions under - [ABC)=[ba

the subset {a, b} is closed and the total number under which the par .

a|bc is invariant, and a correction must then be made for the funer unetions of type [be

which have both these properties. o 3r argument set
Among the 3r argument sets are 2s which consist entirely of ¢ ;. iated in 7 blocks of

So the total number of functions under which {a,b} is closed is Jerived from one an

«ts such as {p;}, {z

225.337'-—23.
. a block, 3 result in 1

Now supposc that a|bc is invariant under f, and consider arguy . the total number o
sets {p;} which include exactly £ members equal to @ and (n — k) men
equal to a.

If k = 0 then f(a) = b, and if k = n then f(@) = a for all such argu: _this type [bca]is t
sets, since f(b) = f(¢) = @. So there is no latitude of choice for t!
values of k.

«ce, when all comple
‘ n her, €y(n), is
For a given value of % in this range, there is a total of (k)2‘0 argun 63"

Take 1 <k <n—1.

n i50
k
which are associated under a|be, that is, argument sets with all the:
entries occurring in identical positions and all 2% possible choices of b a:

appearing in the remaining % places.

sets, which fall into ( ) blocks of 2% sets, each block consisting of -

/(n) = 8.3%" — 6.2%.

he total number of

Now, if a|bc is invariant under f, the 2% values allotted to f in su’ 2) = 8.3 6.22.3*-
block must be either all a or all @, that is, they can be specified in (1+- value obtained by 1
ways. Thus, for each value of k with 1 < £ < n—1, there are /(3) = 8.324 — 6,28.3
| (14224 ~ 21106632442¢

. _ @98 __ @ 9ity
choices to be made, so that the total number of functions under v. h=8.3%-6.253

a|bc is invariant is e = 1-3105.10% {t
n—1 n "
1@ +22k)(1‘:) =m (say). . a) == 2-5834.10%2,
k=1

Permutational varia
“vwe found (9) far
Yions which are g
wits of one amotl

The above total, however, includes those functions under which the
{a,b} is closed, as well as the partition a|bs being invariant, and a si
argument shows that the total number of these is

®

I1(1+25)% =7, (say). e,

k=1 « values of ¢, ()
Therefore, the total number of 8-functions of type [b @ a], i.e. of con'l ©9), and we shall
generators of this type, is o) is easily obt:

i o e
3or_ 925 39r-25 _ 1 L , tion is the si
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Jlbaalis the representative of 6 cases

[ABCl=[baa],[caal, [beb], [bab],[ccal, [ccd].

Funetions of type [b ¢ a]
he 3r argument sets which exclude the repeated marks may be
.ciated in » blocks of 3 sets each, each block consisting of sets which
« derived from one another by the cyclic permutations g - ¢’, g = g”

>

o sets such as {p;}, {pj}, {p;}. Of the 27 ways of assigning values to
+iwha block, 3 result in the function not being fully conjugated.

So the total number of complete generators of type [b ¢ a] is
33r_ g7, '
A1 this type [b ¢ a] is the representative of the 2 cases

[ABC]=[bca], [cab].

lfence, when all complete generators are counted separately, their total
umber, @,(n), is

6(33r_ 223.33r—28_71.1+,n.2) + 2(38r_ 3r)’

1 so

@yn) = 8.3%7 — y(0)

6.925 g3r-2s_ ¢ H (1+ ) +6 H (1+ 2““—1)(7?)— 2.3,

The total number of binary generators is

€(2) = 8.35—6.22.34— 6,52+ 6.32— 2.32 = 3774,

‘e value obtained by Martin (4).

4(3) = 8.32¢ - 6.26.318 _§.53,173 + 6.33,93 —
= 2110663244298,
fi(4) = 8.378 — §.214,301 _ 6 51,176.2574 4 6.3%,95.1291 — 2 326

= 1-3105.10° (to 5 significant digits).
“4(5) = 2-5834.10115,

" Permutational variants not counted separately

As we found (9) for the case m = 2, the problem of enumerating those
“rtions which are genuinely different and not merely permutational

wiants of one another is a rather more complicated combinatorial
“blem,

Ihe values of ¢n(n) for m = 2, n < 5 were calculated in the previous

01 (9), and we shall now look at the function cg(n) for small values of n.

n2) is easily obtained. With 2 arguments,
‘mut

the only non-trivial
ation is the simple interchange of the arguments, under which
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commutative functions are unaffected. Non-commutative by,
functions, however, occur in pairs which are permutational variants u
are therefore not counted separately in ¢y(2).
By a similar enumeration to that above, the number of commutay,.
binary generators is
8.39—6.2.32—6.5+6.3—2.3 = 90
a value first obtained by Swift (8). Hence

¢5(2) = 90+3.3684 = 1932,

b

The frequency of any function f is the number of occurrences in €
of permutational variants which are effectively equivalent to f.

With m = 3, n = 3, the frequency of f may be

1, if all permutations of the arguments leave the function unaltered.

2, if only the cyclic orderings of the arguments are distinguishable,

3, if 2 arguments (and 2 only) are indistinguishable,

6, if all 3 arguments are distinguishable.

Consider first functions which satisfy

b 7} a
fle] =fib] =fla]| and the 5 similar relations,
a a, b
a b ¢
flo] =Sle] =fle| =6 (say),
c a b
o b c
flel=Flal=flb|=H (say).
b c a

If ¢ # H, the cyclic orderings (x,,z,,23) and (v, z,,2,) of the argumen!
are distinguishable and so the function has frequency 2; if ¢ =1, |
has frequency 1.

For a function to be of frequency 3, with, say, x, and 2, the indistinguis!-

able arguments, it must satisfy

fon \ /.
¥, 4
flze] = fla; | whenever 2, # ag,

X X

so that, of the 24 argument sets (other than z, = x, = ), the valu-
at 9 pairs must be the same, the values for the remaining 6 sets bein”

arbitrary. A correction must, of course, be made for the functio
included which are of frequency 1, and the result trebled to introdus
all 3 transpositions.
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« number of functions of frequency 6, which includes the majority
., functions, 1s then obtained by subtracting from the total number
~metions the number with frequency less than 6.

. When, therefore, [4 B C] has been fixed, but if no other restriction
mposed on the function, the number of functions of frequency 1 is 37,
frequency 2 s 3837, of frequency 3 is 3(3*—37), and the rest,
coelv 3% =318 functions, are of frequency 6. For each choice of
o L"], therefore, the total counted towards cy(3) is

Jy = 374 §(38— 37) + 1.3(315— 37) + (32— 316)
— 47078766054

When allowance is made for the other conditions that the complete
crator must satisfy, 4 more calculations of this type are needed, one
sresponding to each term in the above formula for %,(3). The following
wmary should give sufficient information for any reader who is
erested to be able to check the calculation.

L [AdBC]=[baa] and {a,b} closed under f.
Jy = 22354+ 1(22.35 — 22,35) + 1 3(24.311— 22.35) 4 1(26.318 _ 94 3i2)
= 4133903364.
3. [ABC]=[baa]and a|bc invariant under f.
Jy=5.944(5.17—-5.9) 4+ 1.3(5%9.17— 5.9) + 1(5%.17% — 11425)
= 104295,
i. [ABC]=[baa), {a,b} closed, and a|bc invariant.
Jy= 3.5+ 1(3.9-3.5)+ 1.3(32.5.9 — 3.5) -+ 1(32.9 — 1197)
= 3492,
[4 BC]=[bca]and f not fully conjugated.

J3 =0+ 3.0+ 5.8.35 + (3% — 39)
= 1215,

Fina]iy,
¢3(3) = 8J,— 6J,— 6J, + 6J, — 2.J;

= 351828101000,

ithm = 4 it is readily discovered that the functions of frequency 24

—— —
e e e — S—
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For, the 2 terms which dominate the value of %;(4) are 8.378 —¢ o1 o
1t is easily checked that of the 8.378 (= 1-3.10%) functions, the numl. . 1 9

frequency 12 or less is only of the order of 8.6.35 (=1-0.10%6), Simil.. o
of the 6.214.3% (=3.4.10%) functions (which are, for example, of i, i)
. ' 2
[baa] and leave the set {a,b} closed) the number of frequency 1. e
less is only of the order of 6.6.210.341 (= 1-3.10%), ) ;
Ll -
8. Asymptotic expressions T
The total number of complete generators, %;(n), obviously t. L) | 3T
asymptotically to
852 8 N ¥ = 30 ‘ ey(n) || 1932
B = N = 3%").
27 ( ) | SR, | F—
This can be described informally by saying that of the 27 singu o
functions of 3 marks, only 8 are permitted for [4 B C], and for |. . \ILS\\::;“
values of n the other conditions do not materially affect the enumera: Hsing a lo;gir.::tl
By a similar method to that used in (10), it is easily shown that ¢, ¢t L. GoovpstEr
. . : ©oNarmaNn M. Ma
tends asymptotically to Logie 19 (1954
- 8NV + toan, L. Pogr, /
T Lt
!
27n! £ LiTo SALOMAA,
. over a finite s¢
Indeed, the above reasoning makes very plausible the conjecture t' : 'Snu\'_'-‘(‘f)”.u
for general m, o =-"|'-"» 53 (1962;
_n\m * 4 JEAN SWikd
Cu(n) ~ (m 1) m™ American Mar,
. m ¥oloerr F, Wuaee
and | Lovpile vund Gru
. “Aneasymy
nnectives’, il
Clll(n) Nﬁ?%ﬂ(n)? o !
though no neccessary and sufficient conditions for m > 3 have yct !
obtained to substantiate this conjecture. It would mean that whet < University
values of both m and n were reasonably large, the number of cou Leteester

generators could be taken as e~! times the total number of function-.
The results for m = 2 and m = 3 arc collected in the table belov.

9. Conjugate functions not counted separately

If a function is a complete generator, clearly all its m! conjugat
also complete generators, and in the table such functions have .‘7
cases been counted separately. If the members of a mutually conl'
set of complete generators are treated as one for purposes of enumt! :
then all the numerical results in the table must be divided by m!.
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1073709 056

3 4
N -
6,0n) | 2, 56, ) 1_6_25_6i
L | T i
) | 1, 2 16 980
e |
A0 |1 3774 | 2110 663 244 208 | 1.3105.10%
3|
iq(u) 1932 | 351826 101 000 | 5-4603.10%
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