login
This site is supported by donations to The OEIS Foundation.

 

Logo

The October issue of the Notices of the Amer. Math. Soc. has an article about the OEIS.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002523 a(n) = n^4 + 1. 29
1, 2, 17, 82, 257, 626, 1297, 2402, 4097, 6562, 10001, 14642, 20737, 28562, 38417, 50626, 65537, 83522, 104977, 130322, 160001, 194482, 234257, 279842, 331777, 390626, 456977, 531442, 614657, 707282 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) = Phi_8(n), where Phi_k is the k-th cyclotomic polynomial.

All odd prime factors of a(n) are congruent to 1 modulo 8. - Nick Hobson Jan 14 2007

Lee and Murty, p. 685: "In spite of these remarkable advances, we are still unable to determine if n^4 + 1 is infinitely often a squarefree number". - Jonathan Vos Post, Sep 18 2007

Since a(n)*a(m) = (n^4+1)*(m^4+1) = ((n*m)^2-1)^2 + (n^2+m^2)^2, a(n)*a(m) is obvious member of A000404 for n*m > 1. Additionally, if m and n are the legs of a Pythagorean triple, then a(m)*a(n) is the member of A111925. - Altug Alkan, Apr 08 2016

REFERENCES

Mabkhout, M. (1993). "Minoration de P(x^4+1)". Rend. Sem. Fac. Sci. Univ. Cagliari 63 (2): 135-148.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Jung-Jo Lee and M. Ram Murty, Dirichlet series and hyperelliptic curves, Forum Math. 19(2007), 677-705.

Index to values of cyclotomic polynomials of integer argument

Index entries for linear recurrences with constant coefficients, signature (5, -10, 10, -5, 1).

FORMULA

O.g.f.: (1-3*x+17*x^2+7*x^3+2*x^4)/(1-x)^5 . a(n) = 5*a(n-1)-10*a(n-2)+10*a(n-3)-5*a(n-4)+a(n-5) - R. J. Mathar, Apr 28 2008

Sum_{n>=0} 1/a(n) = 1/2 + Pi * (sinh(sqrt(2)*Pi) + sin(sqrt(2)*Pi)) / (2*sqrt(2) * (cosh(sqrt(2)*Pi) - cos(sqrt(2)*Pi))) = 1.578477579667136838318... . - Vaclav Kotesovec, Feb 14 2015

Sum_{n>=0} (-1)^n/a(n) = 1/2 - Pi * (cos(Pi/sqrt(2)) * sinh(Pi/sqrt(2)) + cosh(Pi/sqrt(2)) * sin(Pi/sqrt(2))) / (sqrt(2) * (cos(sqrt(2)*Pi) - cosh(sqrt(2)*Pi))) = 0.54942814871987317922929... . - Vaclav Kotesovec, Feb 14 2015

MAPLE

A002523 := proc(n)

        numtheory[cyclotomic](8, n) ;

end proc:

seq(A002523(n), n=0..20) ; # R. J. Mathar, Feb 07 2014

MATHEMATICA

Table[n^4+1, {n, 0, 60}] (* Vladimir Joseph Stephan Orlovsky, Apr 15 2011 *)

LinearRecurrence[{5, -10, 10, -5, 1}, {1, 2, 17, 82, 257}, 30] (* Ray Chandler, Aug 26 2015 *)

PROG

(MAGMA) [n^4 + 1: n in [0..40]]; // Vincenzo Librandi, Jun 07 2011

(Maxima) A002523(n):=n^4+1$ makelist(A002523(n), n, 0, 30); /* Martin Ettl, Nov 07 2012 */

(PARI) a(n)=n^4+1 \\ Charles R Greathouse IV, Sep 24 2015

CROSSREFS

Cf. A005117.

Sequence in context: A183175 A060352 A215185 * A079889 A053786 A181546

Adjacent sequences:  A002520 A002521 A002522 * A002524 A002525 A002526

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 24 22:27 EDT 2018. Contains 315360 sequences. (Running on oeis4.)