OEIS A002494

RICHARD J. MATHAR

Abstract

Sequence A002494 counts unlabeled simple graphs on n nodes without isolated nodes, which means the degree of each node is at least 1. Simple means: no loops (edges that connect a node with itself), no multiedges.

1. Introduction

Sequence [1, A002494] counts $1,2,7,23, \ldots$ simple graphs on $n=2,3, \ldots$ nodes where the degree of each node is ≥ 1. The subset of connected graphs is [1, A001349], which implies the subset of graphs with more than one component is [1, A327075].

If the nodes are labeled (graphs counted with the multiplicity of $n!/|A u t(G)|)$, sequence A006129 ensues.

Graphs with more than one component are placed in frames. The nodes are symbolized by grey circles with a diameter growing with the degree (just as an aid to visualize the symmetries).
2. 1 GRAPH ON 2 NODES

3. 2 GRAPHS ON 3 NODES

[^0]4. 7 GRAPHS (6 CONNECTED) ON 4 NODES

6. 122 GRAPHS (112 CONNECTED) ON 6 NODES
$6 \bigcirc 7$

13

17

18

19

6
RICHARD J. MATHAR

A002494

$100 \bigcirc$
(105

108

111

References

1. O. E. I. S. Foundation Inc., The On-Line Encyclopedia Of Integer Sequences, (2023), https://oeis.org/. MR 3822822

URL: https://www.mpia-hd.mpg.de/homes/mathar
Max-Planck Institute of Astronomy, Königstuhl 17, 69117 Heidelberg, Germany

[^0]: Date: November 21, 2023.
 2020 Mathematics Subject Classification. Primary 05C30; Secondary 05C75, 81Q15.
 Key words and phrases. Simple Unlabeled Graphs.

