login
a(n) = n^(n^2), or (n^n)^n.
(Formerly M5030 N2170)
55

%I M5030 N2170 #84 Oct 28 2023 11:42:59

%S 1,1,16,19683,4294967296,298023223876953125,

%T 10314424798490535546171949056,

%U 256923577521058878088611477224235621321607,6277101735386680763835789423207666416102355444464034512896,196627050475552913618075908526912116283103450944214766927315415537966391196809

%N a(n) = n^(n^2), or (n^n)^n.

%C The number of closed binary operations on a set of order n. Labeled groupoids.

%C The values of "googol" in base N: "10^100" in base 2 is 2^4=16; "10^100" in base 3 is 3^9=19683, etc. This is N^^3 by the "lower-valued" (left-associative) definition of the hyper4 or tetration operator (see Munafo webpage). - _Robert Munafo_, Jan 25 2010

%C n^(n^k) = (((n^n)^n)^...)^n, with k+1 n's, k >= 0. - _Daniel Forgues_, May 18 2013

%D John S. Rose, A Course on Group Theory, Camb. Univ. Press, 1978, see p. 6.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Michael Lee, <a href="/A002489/b002489.txt">Table of n, a(n) for n = 0..26</a> (first 16 terms from Vincenzo Librandi)

%H Robert Munafo, <a href="http://mrob.com/pub/math/hyper4.html">Hyper4 Iterated Exponential Function</a> [From _Robert Munafo_, Jan 25 2010]

%H Eric Postpischil, <a href="http://groups.google.com/groups?&amp;hl=en&amp;lr=&amp;ie=UTF-8&amp;selm=11802%40shlump.nac.dec.com&amp;rnum=2">Posting to sci.math newsgroup, May 21 1990</a>.

%H P. Rossier, <a href="http://retro.seals.ch/digbib/view?pid=elemat-001:1948:3::26">Grands nombres</a>, Elemente der Mathematik, Vol. 3 (1948), p. 20; <a href="https://www.digizeitschriften.de/dms/img/?PID=PPN378850199_0003%7Clog8">alternative link</a>.

%H <a href="/index/Gre#groupoids">Index entries for sequences related to groupoids</a>

%F a(n) = [x^(n^2)] 1/(1 - n*x). - _Ilya Gutkovskiy_, Oct 10 2017

%F Sum_{n>=1} 1/a(n) = A258102. - _Amiram Eldar_, Nov 11 2020

%e a(3) = 19683 because (3^3)^3 = 3^(3^2) = 19683.

%t Join[{1},Table[n^n^2,{n,10}]] (* _Harvey P. Dale_, Sep 06 2011 *)

%o (Magma) [n^(n^2): n in [0..10]]; // _Vincenzo Librandi_, May 13 2011

%o (PARI) a(n)=n^(n^2) \\ _Charles R Greathouse IV_, Nov 20 2012

%Y a(n) = A079172(n) + A023814(n) = A079176(n) + A079179(n);

%Y a(n) = A079182(n) + A023813(n) = A079186(n) + A079189(n);

%Y a(n) = A079192(n) + A079195(n) + A079198(n) + A023815(n).

%Y Cf. A002488, A001329, A002488, A023813, A076113, A090588, A000312, A258102.

%K nonn,easy,nice

%O 0,3

%A _N. J. A. Sloane_