login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002477 Wonderful Demlo numbers: a(n) = ((10^n - 1)/9)^2.
(Formerly M5386 N2339)
35

%I M5386 N2339

%S 1,121,12321,1234321,123454321,12345654321,1234567654321,

%T 123456787654321,12345678987654321,1234567900987654321,

%U 123456790120987654321,12345679012320987654321,1234567901234320987654321

%N Wonderful Demlo numbers: a(n) = ((10^n - 1)/9)^2.

%C Only the first nine terms of this sequence are palindromes. - _Bui Quang Tuan_, Mar 30 2015

%C Not all of the terms are Demlo numbers as defined by Kaprekar, i.e., concat(L,M,R) with M and L+R repdigits using the same digit. For example, a(10), a(19), a(28) are not, but a(k) for k = 11, 12, ..., 18 are. - _M. F. Hasler_, Nov 18 2017

%D D. R. Kaprekar, On Wonderful Demlo numbers, Math. Stud., 6 (1938), 68.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Vincenzo Librandi, <a href="/A002477/b002477.txt">Table of n, a(n) for n = 1..300</a>

%H K. R. Gunjikar and D. R. Kaprekar, <a href="/A249605/a249605.pdf">Theory of Demlo numbers</a>, J. Univ. Bombay, Vol. VIII, Part 3, Nov. 1939, pp. 3-9. [Annotated scanned copy]

%H Simon Plouffe, <a href="http://www.lacim.uqam.ca/%7Eplouffe/articles/MasterThesis.pdf">Approximations de séries génératrices et quelques conjectures</a>, Dissertation, Université du Québec à Montréal, 1992.

%H Simon Plouffe, <a href="http://www.lacim.uqam.ca/%7Eplouffe/articles/FonctionsGeneratrices.pdf">1031 Generating Functions and Conjectures</a>, Université du Québec à Montréal, 1992.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DemloNumber.html">Demlo Number</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Repunit.html">Repunit</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (111,-1110,1000).

%F G.f.: x*(1+10*x) / ((1-x)*(1-10*x)*(1-100*x)). - _Simon Plouffe_ in his 1992 dissertation

%F a(n+1) = 100*a(n) + 20*A000042(n) + 1; a(1) = 1. - _Reinhard Zumkeller_, May 31 2010

%F a(n) = A000042(n)^2.

%F a(n) = A075412(n)/9 = A178630(n)/18 = A178631(n)/27 = A075415(n)/36 = A178632(n)/45 = A178633(n)/54 = A178634(n)/63 = A178635(n)/72 = A059988(n)/81. - _Reinhard Zumkeller_, May 31 2010

%F a(n+2) = -1000*a(n)+110*a(n+1)+11. - _Alexander R. Povolotsky_, Jun 06 2014

%e From _José de Jesús Camacho Medina_, Apr 01 2016: (Start)

%e n=1: ....................... 1 = 9 / 9;

%e n=2: ..................... 121 = 1089 / 9;

%e n=3: ................... 12321 = 110889 / 9;

%e n=4: ................. 1234321 = 11108889 / 9;

%e n=5: ............... 123454321 = 1111088889 / 9;

%e n=6: ............. 12345654321 = 111110888889 / 9;

%e n=7: ........... 1234567654321 = 11111108888889 / 9;

%e n=8: ......... 123456787654321 = 1111111088888889 / 9;

%e n=9: ....... 12345678987654321 = 111111110888888889 / 9. (End)

%e a(11) = concat(L = 1234567901, R = 20987654321), with L + R = 22222222222 = 2*(10^11-1)/9, of same length as R. - _M. F. Hasler_, Nov 23 2017

%p A002477 := proc(n)

%p (10^n-1)^2/81 ;

%p end proc:

%p seq(A002477(n),n=1..12) ; # _R. J. Mathar_, Aug 06 2019

%t Table[FromDigits[PadRight[{},n,1]]^2,{n,15}] (* _Harvey P. Dale_, Oct 16 2012 *)

%o (PARI) a(n) = (10^n\9)^2 \\ _Charles R Greathouse IV_, Jul 25 2011

%o (MAGMA) [((10^n - 1)/9)^2: n in [1..20]]; // _Vincenzo Librandi_, Jul 26 2011

%o (Maxima) A002477(n):=((10^n - 1)/9)^2$

%o makelist(A002477(n),n,1,10); /* _Martin Ettl_, Nov 12 2012 */

%Y Cf. A002275.

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_

%E Minor edits from _N. J. A. Sloane_, Aug 18 2009

%E Further edits from _Reinhard Zumkeller_, May 12 2010

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 11 15:51 EST 2019. Contains 329019 sequences. (Running on oeis4.)