login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002472 Number of pairs x,y such that y-x=2, (x,n)=1, (y,n)=1 and 1 <= x <= n.
(Formerly M0411 N0157)
1

%I M0411 N0157

%S 1,1,1,2,3,1,5,4,3,3,9,2,11,5,3,8,15,3,17,6,5,9,21,4,15,11,9,10,27,3,

%T 29,16,9,15,15,6,35,17,11,12,39,5,41,18,9,21,45,8,35,15,15,22,51,9,27,

%U 20,17,27,57,6,59,29,15,32,33,9,65,30,21,15,69,12,71,35,15,34,45,11,77,24,27

%N Number of pairs x,y such that y-x=2, (x,n)=1, (y,n)=1 and 1 <= x <= n.

%D Golubev, V. A.; Nombres de Mersenne et caracteres du nombre 2. Mathesis 67 1958 257-262.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H T. D. Noe, <a href="/A002472/b002472.txt">Table of n, a(n) for n = 1..1000</a>

%F Multiplicative with a(p^e) = p^(e-1) if p = 2; (p-2)*p^(e-1) if p > 2. - _David W. Wilson_, Aug 01 2001

%t a[n_] := If[ Head[ r=Reduce[ GCD[x, n] == 1 && GCD[x+2, n] == 1 && 1 <= x <= n, x, Integers]] === Or, Length[r], 1]; Table[a[n], {n, 1, 81}] (* _Jean-Fran├žois Alcover_, Nov 22 2011 *)

%o (PARI) a(n)=my(k=valuation(n,2),f=factor(n>>k));prod(i=1,#f[,1],(f[i,1]-2)*f[i,1]^(f[i,2]-1))<<max(0,k-1) \\ _Charles R Greathouse IV_, Nov 22 2011

%o (Haskell)

%o a002472 n = length [x | x <- [1..n], gcd n x == 1, gcd n (x + 2) == 1]

%o -- _Reinhard Zumkeller_, Mar 23 2012

%K nonn,nice,easy,mult

%O 1,4

%A _N. J. A. Sloane_

%E More terms from _David W. Wilson_

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 4 05:11 EST 2016. Contains 278748 sequences.