The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002471 Number of partitions of n into a prime and a square. (Formerly M0073 N0025) 10
 0, 1, 2, 1, 1, 2, 2, 1, 1, 0, 3, 2, 1, 2, 1, 1, 2, 2, 2, 2, 2, 1, 3, 1, 0, 1, 3, 2, 2, 2, 1, 3, 2, 0, 2, 1, 1, 4, 2, 1, 3, 2, 2, 2, 2, 1, 4, 2, 1, 1, 2, 2, 3, 3, 1, 3, 2, 0, 3, 2, 1, 4, 2, 0, 2, 3, 3, 4, 2, 1, 3, 3, 2, 1, 3, 1, 4, 2, 2, 3, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS a(A014090(n))=0; a(A014089(n))>0; a(A143989(n))=1. - Reinhard Zumkeller, Sep 07 2008 REFERENCES Selmer, Ernst S.; Eine numerische Untersuchung ueber die Darstellung der natuerlichen Zahlen als Summe einer Primzahl und einer Quadratzahl. Arch. Math. Naturvid. 47, (1943). no. 2, 21-39. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n = 1..10000 FORMULA G.f.: (Sum_{i>=0} x^(i^2))*(Sum_{j>=1} x^prime(j)). - Ilya Gutkovskiy, Feb 07 2017 MAPLE n->nops(select(isprime, [ seq(n-i^2, i=0..trunc(sqrt(n))) ])): with(combstruct): specM0073 := {N=Prod(P, S), P=Set(Z, card>=1), S=Set(Z, card>=0)}: `combstruct/compile`(specM0073, unlabeled): `combstruct/Count`[ specM0073, unlabeled ][ P ] := proc(p) option remember; if isprime(p) then 1 else 0 fi end: `combstruct/Count`[ specM0073, unlabeled ][ S ] := proc(p) option remember; if type(sqrt(p), integer) then 1 else 0 fi end: M0073 := n->count([ N, specM0073, unlabeled ], size=n): MATHEMATICA a[n_] := Count[p /. {ToRules[ Reduce[ p > 1 && q >= 0 && n == p + q^2, {p, q}, Integers]]}, _?PrimeQ]; Table[ a[n], {n, 1, 81}] (* from Jean-François Alcover, Sep 30 2011 *) PROG (Haskell) a002471 n = sum \$ map (a010051 . (n -)) \$ takeWhile (< n) a000290_list -- Reinhard Zumkeller, Jul 23 2013, Sep 30 2011 (PARI) a(n)=if(n>1, sum(k=0, sqrtint(n-2), isprime(n-k^2)), 0) \\ Charles R Greathouse IV, Feb 08 2017 CROSSREFS Cf. A064272, A010051, A000290. Sequence in context: A242998 A140885 A064286 * A218622 A337621 A091243 Adjacent sequences:  A002468 A002469 A002470 * A002472 A002473 A002474 KEYWORD nonn,nice AUTHOR EXTENSIONS Sequence corrected by Paul Zimmermann, Mar 15 1996 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 16 05:56 EDT 2022. Contains 353693 sequences. (Running on oeis4.)