This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002435 Second-order Euler numbers. (Formerly M1686 N0665) 0
 0, 2, 6, 28, 180, 662, 7266, 24568, 408360, 1326122, 30974526, 98329108, 3065784540, 9596075582, 384653685786, 1192744081648, 59724464976720, 183983154281042, 11249503075325046, 34489251602450188 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 75. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS M. A. Stern, Zur Theorie der Eulerschen Zahlen, J. Reine Angew. Math., 79 (1875), 67-98. MAPLE F := 2/(exp(x)+exp(-x)): z := ((exp(x)-exp(-x))/(exp(x)+exp(-x)))^2: w := simplify(diff(z, x)): p := proc(n) if n mod 2 = 0 then simplify(subs(x=0, (-1)^(1+floor(n/2))*simplify(diff(diff(F, x\$n)/F, x)/w))) else simplify(subs(x=0, (-1)^(1+floor(n/2))*simplify(diff(diff(F, x\$n)/simplify(diff(F, x)), x)/w))) fi end: seq(p(n), n=1..28); # Emeric Deutsch, Mar 09 2004 CROSSREFS Sequence in context: A140092 A052809 A136631 * A276911 A104018 A100526 Adjacent sequences:  A002432 A002433 A002434 * A002436 A002437 A002438 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Emeric Deutsch, Mar 09 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 15 20:47 EST 2019. Contains 319184 sequences. (Running on oeis4.)