login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002424 Expansion of (1-4*x)^(9/2).
(Formerly M5058 N2188)
5
1, -18, 126, -420, 630, -252, -84, -72, -90, -140, -252, -504, -1092, -2520, -6120, -15504, -40698, -110124, -305900, -869400, -2521260, -7443720, -22331160, -67964400, -209556900, -653817528, -2062039896, -6567978928, -21111360840 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

REFERENCES

A. Fletcher, J. C. P. Miller, L. Rosenhead and L. J. Comrie, An Index of Mathematical Tables. Vols. 1 and 2, 2nd ed., Blackwell, Oxford and Addison-Wesley, Reading, MA, 1962, Vol. 1, p. 55.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

T. N. Thiele, Interpolationsrechnung. Teubner, Leipzig, 1909, p. 164.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

N. J. A. Sloane, Notes on A984 and A2420-A2424

FORMULA

a(n) = Sum_{m=0..n} binomial(n, m) * K_m(10), where K_m(x) = K_m(n, 2, x) is a Krawtchouk polynomial. - Alexander Barg, abarg(AT)research.bell-labs.com.

a(n) = -(945/32)*4^n*Gamma(-9/2+n)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015

a(n) = (-4)^n*binomial(9/2, n). - G. C. Greubel, Jul 03 2019

D-finite: n*a(n) +2*(-2*n+11)*a(n-1)=0. - R. J. Mathar, Jan 16 2020

MAPLE

A002424 := n -> -(945/32)*4^n*GAMMA(-9/2+n)/(sqrt(Pi)*GAMMA(1+n)):

seq(A002424(n), n=0..28); # Peter Luschny, Dec 14 2015

MATHEMATICA

CoefficientList[Series[(1-4x)^(9/2), {x, 0, 30}], x] (* Harvey P. Dale, Dec 27 2011 *)

PROG

(PARI) x='x+O('x^30); Vec((1-4*x)^(9/2)) \\ Altug Alkan, Dec 14 2015

(PARI) vector(30, n, n--; (-4)^n*binomial(9/2, n)) \\ G. C. Greubel, Jul 03 2019

(MAGMA) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-4*x)^(9/2) )); // G. C. Greubel, Jul 03 2019

(Sage) [(-4)^n*binomial(9/2, n) for n in (0..30)] # G. C. Greubel, Jul 03 2019

CROSSREFS

Cf. A002420, A002421, A002422, A002423, A004001, A007054, A007272.

Sequence in context: A077960 A107971 A292314 * A101378 A107417 A056125

Adjacent sequences:  A002421 A002422 A002423 * A002425 A002426 A002427

KEYWORD

sign,easy,nice,changed

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 23 13:37 EST 2020. Contains 331171 sequences. (Running on oeis4.)